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ABSTRACT

Ultraviolet (UV) detectors are important for their applications in flame detection, furnace 

gas control systems, plume monitoring etc. Due to their wide band-gap, 4H-SiC 

(Eg=3.26eV) and III-V semiconductors such as GaN (Eg=3.4eV), AlxGa1-xN (Eg=3.4eV to 

6.2eV) etc., are excellent candidates for visible(𝜆cut-0ff=400nm) and solar blind(𝜆cut-

0ff=290nm) UV detectors. Conventional SiC UV detectors suffer from poor UV 

responsivities due to reflection/absorption/transmission losses caused by the metal 

electrodes used in those detectors. 

In the first part, a novel bipolar transistor with epitaxial graphene(EG)/p-SiC 

(30µm)/n+-SiC substrate was fabricated and characterized.  The 2-3 ML thick, transparent 

and conducting, EG used in this work was grown by using thermal sublimation of SiC. 

Under 0.43 µW 365nm UV illumination, this device showed a responsivity(R) of 7.1A/W 

better than or comparable to the state of the art SiC Schottky and PiN diodes, and a bipolar 

current gain of 113, when operated in the Schottky emitter(SE) mode. Further, a UV-visible 

rejection (R365: R444) >103 is estimated for this device. 

In the second part, EG/p-SiC(13µm)/ n+-SiC bipolar transistor device structures 

were fabricated, where EG was grown by selectively etching Si from SiC using a novel 

Tetrafluorosilane(SiF4) precursor. The photo-transistor showed responsivity as high as 25 

A/W at 250 nm in the SE mode. The SC mode showed a responsivity of 17A/W at 270nm 

with a visible rejection (R270: R400)>103. The fastest response was seen in the SC-mode, 
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with 10ms turn-on and 47ms turn-off, with a noise equivalent power(NEP) of 2.3fW at 20 

Hz and a specific detectivity of 4.4x1013 Jones. 

In the final part, HEMT devices with Al0.85Ga0.15N/Al0.65Ga0.35N as barrier and 

channel layers, were fabricated and characterized. These devices showed a photo-

responsivity ~1×106A/W at 220nm, with solar and visible rejection ~102 limited by sub-

bandgap states in the AlGaN. The lowest NEP was observed near the threshold voltage, 

4.7fW at 220nm and ~4.4fW at 260nm, with a responsivity of ~103A/W. A measured slow 

response time of ~20s is attributed to trapping at the AlN/AlGaN growth interface. 

Potential solutions to reduce the trapping responsible for the increased response times are 

discussed.  
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CHAPTER 1 

INTRODUCTION 

Silicon Carbide (SiC) and Gallium Nitride (GaN) based electronic and optoelectronic 

devices have been extensively studied for their applications in high voltage, high 

temperature and harsh radiation environments under which conventional Si devices cannot 

adequately perform. In particular, SiC’s high temperature high power capabilities offer 

significant economic benefits to industries such as aircraft, power, automotive and energy 

production etc. In this chapter, the material properties of SiC and GaN, and their advantages 

compared to conventional semiconductors like silicon will be discussed. Further, various 

aspects of SiC growth technology including step controlled epitaxy for polytype 

uniformity, doping control is discussed. In section 1.3, the properties and uses of 

ultraviolet(UV) radiation will be discussed. Then, the need for UV detection is discussed 

and this is followed by introduction to wide bandgap(WBG) semiconductors based UV 

detectors along with their advantages and limitations. At the end of this chapter, the 

motivation for the present research work to develop visible-blind UV detectors using 

graphene/SiC devices and solar-blind UV detectors using Aluminum Gallium 

Nitride(AlGaN) high electron mobility transistor(HEMT) devices is discussed.
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1.1 WIDE BANDGAP SEMICONDUCTOR MATERIALS 

Since the last two decades, there has been an increasing demand for alternative energy 

sources to traditional gasoline and diesel due to increasing prices and diminishing supply; 

and the emissions from these sources is a major concern for environmental safety. 

Therefore, these days there is a great interest in using renewable energy sources for power 

generation, and also moving towards electrical and hybrid electrical vehicles. Power 

electronic devices are key components that play a vital role in the generation-storage-

distribution cycle. With the widespread use of electronics in the consumer, industrial, 

medical and transportation sectors, power devices have a major impact on the economy 

because they determine the cost and efficiency of the systems. Traditionally Si power 

devices have been used in power systems, but Si power devices have limitations in their 

performance regarding the operation temperature, blocking voltage capability and 

switching frequency (Neudeck, Okojie, & Chen, 2002). Moreover, when operated at high 

voltages these Si power devices require additional cooling systems making the size of the 

power electronics bulky and this has become a bottleneck for their use in defense and 

aircraft applications. These limitations in Si power devices led to the development of WBG 

power semiconductor devices suitable for efficient, reliable, compact and low-cost power 

electronic systems (Hudgins, Member, Simin, Santi, & Khan, 2003). 

1.2 PROPERTIES OF SiC AND GaN 

Silicon Carbide(SiC) is a compound semiconductor that exists in a wide variety of crystal 

structures with unique physical and chemical properties. The strong chemical bonding 

between Si and C atoms in this semiconductor material makes it very hard material. It has 
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high chemical inertness and radiation hardness, therefore can perform better than Si in 

harsh environment conditions.  

Among these different crystal structure also known as polytypes, 4H-SiC is more 

popular. Due to the difference in crystal structures, the band structure of each polytype is 

different and therefore exhibits different optical and electrical properties. Table 1.1 

(Kimoto & Cooper, 2014) (Baliga, 2008) show a comparison of the material properties of 

the 4H-SiC, 6H-SiC with other semiconductors including narrow bandgap Si, GaAs and 

WBG GaN and diamond. 

Table 1.1 Comparison of properties of different semiconductor materials. 

 

Property Si GaAs 6H-SiC 4H-SiC GaN Diamond 

Bandgap, Eg (eV) 1.12 1.43 3.03 3.26 3.45 5.45 

Dielectric 

Constant, 𝜀𝑟
1 

11.9 13.1 9.66 10.1 9 5.5 

Electric 

Breakdown 

Field, (MV/cm) 

(at 

ND=3X1016cm-3) 

300 400 
⊥: 1.7 

∥: 3.0 

⊥: 2.2 

∥: 2.8 
2000 10000 

Electron 

Mobility,  

(cm2/V-s)  

1500 8500 
⊥: 450 

∥: 100 

⊥: 1020 

∥: 1200 
1250 2200 

Hole Mobility, 

(cm2/Vs) 
600 400 100 120 850 850 

Intrinsic Carrier 

Concentration at  

300 K, (cm-3) 

1.45x1010 1.79x106 1x10-6 5x10-9 1.9x10-10 ~10-27 

Thermal 

conductivity, 

(W/cm/K) 

1.5 0.46 4.9 4.9 1.3 22 

Saturated 

Electron Drift 

Velocity, Vsat  

(x107cm/s) 

1 1 1.9 2.2 2.2 2.7 
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The intrinsic carrier concentration in 4H-SiC is 18 orders less compared to Si, and 

this causes a significant reduction in dark current in 4H-SiC devices. Further, the thermal 

conductivity of 4H-SiC is 3 times higher compared to thermal conductivity of Si, and as a 

result 4H-SiC can be used in high voltage devices without the need for additional cooling 

parts. Also, the breakdown field is almost 8 times higher in 4H-SiC, therefore significantly 

reducing the thickness of the device active layers. Low dark current, high thermal 

conductivity and reduced thickness of the 4H-SiC active layers compared to Si therefore 

makes 4H-SiC suitable for high temperature operation by using compact size devices. 

Further, the high saturated electron drift velocity(vsat) of 4H-SiC makes it suitable for high 

frequency switching. 

Another WBG semiconductor material, GaN is a major contender for 4H-SiC in 

high power and high frequency switching applications. Also, the direct bandgap nature of 

GaN makes it particularly advantageous to use it in optoelectronic applications. The major 

advantage of 4H-SiC in comparison with GaN is its high thermal conductivity, which is 3 

times higher than the thermal conductivity of GaN. Due to its indirect bandgap, the carriers 

in SiC have a longer carrier lifetime compared to GaN, yielding longer diffusion lengths. 

This leads to high base transport factor, and thus high bipolar gain which is key for 

fabricating bipolar devices suitable for high voltage power devices (Chow et al., 2000).  

1.2.1 SiC CRYSTAL STRUCTURE AND POLYTYPES 

SiC is a compound semiconductor consisting of 50% Silicon and 50% Carbon atoms in its 

crystal lattice. Each Si atom is covalently bonded by sp3 hybridization to four C atoms 

tetrahedrally, and vice versa. The basic building block for SiC crystal structure consists of 

a bilayer of Si and C atoms as shown in Figure 1.1(a). Further, Ramsdell’s notation 
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(Shaffer, 1969) is commonly used to uniquely represent the SiC polytypes by considering 

the number of Si-C bilayers in the unit cell and the symmetry of the crystal system (C for 

cubic, H for hexagonal and R for rhombohedral). In Ramsdell’s notation, the five most 

common polytypes of SiC are represented as 2H-SiC, 3C-SiC, 4H-SiC, 6H-SiC and 15R-

SiC; where the numbers 2, 3,4,6 and 15 represents the number of bi-layers in the unit cell 

and the letters C, H and R corresponds to the cubic, hexagonal and rhombohedral crystal 

symmetry. 

 

 
 

Figure 1.1. Tetrahedral basic unit of SiC. 

 

In the hexagonal crystallographic system, there are four major crystallographic axes 

namely, a1, a2, a3, and c-axis; where the equivalent axes a1, a2, a3 lie in the same plane at 

an angle of 120° and c axis is perpendicular to this plane (Figure 1.2(b)).(Kimoto & 

Cooper, 2014). 
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Figure 1.2 Primitive cells and fundamental translational vectors of (a) cubic and (b) 

hexagonal SiC. 

 

In hcp system, there are three possible occupational sites in the basal plane 

represented by A, B and C sites (Figure 1.3(a)) (Kimoto & Cooper, 2014).. The tetrahedron 

or Si-C bilayer can occupy these three different (A, B or C) lattice positions with each layer 

in the basal plane consists of only one tetrahedral type or position.  The variation in the 

occupied sites, by the Si-C bilayers or tetrahedral, along the c-axis in a hexagonal closed 

packed (hcp) system brings about different crystal structures, known as polytypes. The 

different polytypes in SiC therefore can be identified by looking at the occupation sites of 

Si-C bilayers or tetrahedral along the c-axis direction. As shown in Figure 1.3(b) (Kimoto 

& Cooper, 2014)., the Si-C bilayers may occupy any of the lattice sites A, B, and C to form 

close packed structures, where two successive layers cannot occupy the same site. For 

example, the next layer on top of A layer must occupy either “B” or “C” sites. Similarly, 

for C layer, the next layer has to occupy either “A” or “B” sites. 

Also, as shown in Figure 1.4, the occupation of each lattice position, by the Si-C 

bilayer or tetrahedral, can possibly occur in two different variants corresponding to rotation 

around the c-axis by 180°. The twinned variants are denoted by a prime sign as in: A’, B’ 
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and C’. These two variants can be seen in 4H-SiC and 6H-SiC, in Figure 1.4 (Kimoto, 

2016), where the stacking sequence is represented as ABA’C’ and BCAC’B’A’. 

 

 
 

Figure 1.3 (a) ABC sites in hexagonal crystal lattice. (b) Occupational sites (A, B, and C) 

in the hexagonal closed-packed system in the hard sphere model. 

 

The only cubic (zinc blende) polytype of SiC is 3C-SiC, also referred to as β-SiC. 

This has a stacking sequence of ABC. All other polytypes are referred to as α-SiC.  The 

2H-SiC show hexagonal (wurtzite) symmetry with ABAB…stacking order. Except 3C-SiC 

and 2H-SiC, all other polytypes have crystal structures which are a mixture of zinc-blende 

(cubic) and wurtzite (hexagonal) structures. 4H-SiC consists of an equal number of cubic 

and hexagonal bonds, hexagonality=0.5, with a stacking sequence of ABC’B’. 6H-SiC is 

composed of two-third cubic bonds and one-third hexagonal bonds, hexagonality=0.33, 

with a stacking sequences of ABCA’C’B’.  

The hexagonality of a polytype can be defined as the percentage of hexagonal layers 

present in the unit cell. The overall symmetry is hexagonal for both polytypes, despite the 

presence of dominant cubic bonds in each of them. Similarly, 15R-SiC is a rhombohedral 

crystal structure composed of three-fifth cubic bonds and two-fifth hexagonal bonds. 
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Figure 1.4 Stacking sequence of 3C, 4H and 6H polytypes of SiC. 

 

 
 

Figure 1.5 Stacking arrangements seen along [1120] direction of SiC polytypes. Here Si 

atoms are represented as open circles and C atoms are represented as filled circles. 

 

As mentioned earlier, the 4H-SiC and 6H-SiC polytypes are not completely cubic 

or hexagonal but are mixed polytypes and have different hexagonality factors. Figure 1.5 

(Ayalew, 2004) shows the stacking arrangement of five different polytypes of SiC. As 

shown, the silicon atoms labeled "h" or "k" denote Si-C double layers that reside in quasi-
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hexagonal or quasi-cubic environments with respect to their immediately neighboring 

above and below bilayers (Ayalew, 2004). In the 4H stacking sequence of ABC’B’, all the 

A sites are the hexagonal "h" sites and all the B and C sites are the cubic "k" sites. Similarly, 

in the 6H stacking sequence of ABCA’C’B’, while all the A sites are the hexagonal "h" 

sites, there are two kinds of inequivalent quasi-cubic sites for B and C, denoted "k1" and 

"k2"sites, respectively (Ayalew, 2004). In Figure 1.5. the [1100] direction is often referred 

to as the p or m-axis and the [1120] direction is referred to as a-axis direction.  

 

 
 

Figure 1.6 Hexagonal unit cell of SiC showing different crystal planes. 

 

As mentioned before, the stacking sequence along the c-axis is different for each 

SiC polytypes. Therefore, they have different band structures resulting in different optical 

and electrical properties. Also, the material properties for a given polytype may be different 

along the c-axis or perpendicular to the c-axis and this is called anisotropy. The degree of 

anisotropy is measured by the quotient of a parameter value along and perpendicular to the 

c-axis and anisotropy of 1 is means isotropic material. The use of a particular SiC polytype 
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for a specific application may thus depend on this anisotropy in the material properties. For 

example, the mobility anisotropy in 6H-SiC is higher compared to 4H-SiC (Table 1.1) 

which is why 4H-SiC is attractive for vertical power devices. Similarly, the crystal growth 

is different on different planes (Figure 1.6) for growth rates and polytype replication 

(homogeneity) due to the variation in atomic packing density along different crystal 

directions. 

1.2.2 EPITAXIAL GROWTH OF SILICON CARBIDE 

It is important to grow high quality 4H-SiC epitaxial layers to exploit the exceptional 

material properties of 4H-SiC (Table 1.1) for fabricating high power and high voltage 

devices. The important aspects related to SiC epitaxial growth development are achieving 

polytype uniformity, wide range doping control, minimizing/eliminating the defects. 

Before discussing these aspects, the CVD growth technique used for SiC epi-layer growth 

is described here briefly.  

Homo-epitaxial growth of SiC, growth of same polytype SiC epilayers as SiC 

substrates, can be done in three different techniques: liquid phase epitaxy(LPE), vapor 

phase epitaxy(VPE) and vapor-liquid-solid epitaxy(VLS). The vapor phase epitaxy can be 

further divided into chemical vapor deposition(CVD), sublimation epitaxy, and high 

temperature CVD(HTCVD). 

Among these different techniques, CVD (Wijesundara & Azevedo, 2011) has 

shown considerable success and is widely used in industries. In CVD growth of SiC, 

carbon- and silicon-containing gaseous compounds are transported to a heated SiC 

substrate, typically above 1200°C, where the homo-epitaxial growth of SiC takes place 
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through a surface-induced chemical reaction. The actual growth process, when the growth 

reactor reaches the desired vacuum and temperature conditions, typically 1600°C and 300 

Torr, is done in two steps: The first step is in-situ etching of SiC, and its purpose is to 

remove any subsurface damage and also to obtain the regular step structures. The second 

step is the actual growth step where the precursor and carrier gases are introduced into the 

growth reactor. 

In SiC epitaxial growth using CVD technique, typically, propane(C3H8) is used as 

carbon precursor. Whereas for Si dopants, various gas precursors are available such as 

silane (SiH4), dichlorosilane(DCS) (SiH2Cl2), tetrafluorosilane (TFS) (SiF4). Silane has 

been successfully used as a Si precursor with high growth rates. But the high grow rates 

are achieved by using high gas flow rates causing homogenous nucleation in the gas phase 

due to high partial pressure of the precursor gases, thus results in poor surface quality 

(Pedersen et al., 2012). 

Later, Chloride based precursors such as dichlorosilane(DCS), 

tetrachlorosilane(SiCl4) have been used to grow SiC epilayers by suppressing the Si droplet 

formation (Pedersen et al., 2012). Recently, high quality SiC epilayer growth is reported, 

by eliminating the Si droplet formation and suppress parasitic deposition, by using TFS gas 

precursor (Tawhid Rana, 2013).  Parasitic deposition can occur, even at temperatures lower 

than growth temperature 1600°C, on the reactor walls due to dissociation of precursor gas 

molecule while the gas is flowing towards the sample surface and this causes depletion of 

precursor gases for actual growth and also necessitates the frequent replacement of reactor 

parts. The difference in the parasitic deposition for different precursor gases can be 

explained by considering the bond dissociation energy of the precursor molecules. The 
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bond dissociation energy for Si-F is 565 kJ/mole, which is much higher than the bond 

dissociation energy of Si-H (318 kJ/mole), Si-Cl (381 kJ/mole) etc., (T. Rana, 

Chandrashekhar, & Sudarshan, 2012). Therefore, the dissociation of TFS molecule, in a 

CVD growth reactor, is expected to occur much closer to the substrate surface, i.e. at the 

growth temperature, in comparison with silane and DCS. Additionally, TFS can also be 

used for growing graphene on SiC epilayers as will be discussed in chapter 2. In this present 

research work, TFS and propane gas precursors diluted are used to grow SiC epilayers, and 

these epilayers are later used as active layer for fabricating the SiC UV detectors. The 

details for the growth recipe and operation of the CVD reactor, for growing high quality 

SiC epilayers used in this work (chapters 2,3 and 4), are discussed in detail elsewhere 

(Tawhid Rana, 2013). 

As mentioned before, controlling the polytype uniformity, doping type and density 

over a wide range, and reduction of defect density are key considerations for the 

development of SiC epitaxy. 

Polytype uniformity 

The polytype uniformity in SiC epitaxial growth is achieved by using a technique called 

step-controlled epitaxy (Matsunami & Kimoto, 1997). In this method, the epilayers use the 

step features on the off-axis substrates as a growth template, and therefore can be grown 

with high polytype uniformity. 

As shown in Figure 1.7 (Kimoto & Cooper, 2014)., in case of on-axis {0001} 

substrates, the step density is very low, and therefore, large {0001} terraces exist The 

temperature is the key parameter affecting the polytype of the grown epilayers. As a result, 

growth of 3C-SiC may occur initially at low temperatures through two-dimensional 
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nucleation, In case of off-axis substrates, however, the step density is very high and terrace 

width is small. In this case (see Figure 1.7), the adatoms move towards the steps and kinks 

which determine the unique lattice sites, to grow laterally replicating the step feature of the 

off-axis substrate. The growth kinetics of SiC epitaxial growth is explained by Ellison 

(Ellison, 1999). Although step controlled epitaxy on off-axis substrates helps in obtaining 

epilayers with better polytype uniformity, the use of off-axis substrates has two major 

drawbacks in the form of material wastage and formation of BPD’s (Kimoto & Cooper, 

2014).in the epitaxial layers (see Table 1.1) 

 

 
Figure 1.7 Schematic illustration of growth modes and stacking sequences of SiC layers 

grown on (a) on-axis 6H-SiC(0001) and (b) off-axis 6H-SiC(0001). (c) Bond configuration 

near an atomic step and on the (0001) terrace. (DPB: Double-Positioning Boundary). 

 

Doping control 

The dopants used to control the conductivity type (n or p) in SiC are believed to occupy 

specific sites, specifically nitrogen occupies the carbon site while aluminum occupies the 
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silicon site of the SiC lattice. The doping type and density of epitaxial SiC epilayers can be 

controlled by varying the gas flow ratio of C and Si precursors used during the CVD growth 

process. Under Si-rich (low C/Si ratio) conditions, the epilayers show n-type conductivity. 

Similarly, under C-rich (high C/Si ratio) conditions, the resultant epilayers show p-type 

conductivity. This difference in doping due to change in C/Si is ratio, key to achieve wide 

range of doping densities in a controlled manner, is explained by a concept called site-

competition epitaxy (Larkin, Neudeck, Powell, & Matus, 1994). 

According to the theory of site-competition epitaxy: there is a competition between 

nitrogen and carbon atoms to occupy carbon sites; and aluminum, boron and silicon atoms 

to occupy Si sites. As a consequence, under Si-rich (low C/Si ratio) conditions, the low 

carbon atom concentration on the growing surface promotes nitrogen incorporation and 

results in n-type doping. Similarly, the low Si atom coverage on the growing surface under 

C-rich (high C/Si ratio) conditions promotes incorporation of Al or B and results in p-type 

doping. 

Defects in SiC 

It is important to study the defects formed in SiC epilayers, extended defects or process 

induced defects, as they are detrimental for the performance of SiC devices. Some 

important defects in SiC epitaxy include micropipes(MP), threading screw dislocations 

(TSD), threading edge dislocations (TED), the basal plane dislocations (BPD) and stacking 

faults (SF) (N. Zhang, 2011). Figure 1.8 (Kimoto, 2015).shows the different types of 

defects observed in SiC epilayer. Some of these defects can be converetd into less harmful 

TSD and TED during SiC epitaxial growth. Various methods such as alkaline KOH etching  
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Figure 1.8 (a) Nomarski image of KOH etched epitaxial SiC layer showing various crystal 

defects in SiC. (b) Replication and conversion of dislocations in SiC epitaxial layers grown 

on off-axis substrate. 

 

Table 1.2 Current understanding of effects of extended defects on SiC device performance 

and reliability. 

 

              Device type 

Defect type 
SBD MOSFET, JFET 

PiN, BJT, 

Thyristor, IGBT 

TSD 

(without pit) 
No Noa) 

Noa), but causes 

local reduction of 

carrier lifetime 

TED No Noa) 

Noa), but causes 

local reduction of 

carrier lifetime 

BPD 

(including interface 

dislocation, half-

loop array) 

No 

Noa), but can cause 

degradation of body 

diode 

Bipolar degradation 

(increase of on-

resistance and 

leakage current) 

In-grown SF 
VB reduction 

(20-50%) 

VB reduction 

(20-50%) 

VB reduction 

(20-50%) 

Carrot, triangular 

defects 

VB reduction 

(30-70%) 

VB reduction 

(30-70%) 

VB reduction 

(30-70%) 

Down-fall 
VB reduction 

(50-90%) 

VB reduction 

(50-90%) 

VB reduction 

(50-90%) 

 

a) Impacts on gate-oxide reliability are still under consideration. 

SBD: Schottky barrier diode, MOSFET: Metal oxide field effect transistor, JFET: Junction 

field effect transistor, PiN: PiN diode, BJT: Bipolar junction transistor, IGBT: Insulated 

gate bipolar transistor, VB: breakdown voltage 
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have been reported (Z. Zhang & Sudarshan, 2005) that can effectively minimize the defect 

denisty in the SiC epilayers. Among these defects, BPDs and SF’s are considered to be 

device killing defects (N. Zhang, 2011). Table 1.2 (Kimoto, 2015). summarizes the effect 

of various crystal defects on performance and reliability of SiC devices.  

1.3 ULTRAVIOLET(UV) DETECTORS 

Photodetectors are the devices that can generate an output signal in response to incident 

light. UV detectors are a special category of photodetectors which can produce an output 

signal when UV light is incident on them. The electromagnetic spectrum is divided into 

different spectral regions depending on the energy (or wavelength) of the radiation. Among 

these different spectral regions, the UV radiation which is spread from 10nm-400nm is 

particularly important due to various applications. UV light is produced by sun and also 

various artificial sources such as electric arcs, mercury vapor lamps etc. UV light has 

important applications including disinfection for viruses and bacteria, hygiene and 

infection control, UV fluorescence spectroscopy, sterilizing surgical equipment and air 

quality in operating rooms. A part of UV light emitted from sun gets absorbed (10-290nm) 

in different regions of the atmosphere including ozone, and only the radiation with 

wavelength above 290nm reaches the earth’s surface (see Figure 1.9 (a)).  

The UV radiation spectrum is further divided into four regions depending on the 

wavelength. 

UV-A(320nm-400nm): This radiation stimulates photosynthesis, and is also responsible 

for synthesis of some vitamins and basic biochemical compounds. Over exposure may lead 

to ageing.  
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UV-B(280nm-320nm): This radiation consists of about 10% of the total UV radiation 

power density from the sun (i.e. 290nm-400nm) reaching the earth’s surface (Figure 

1.9(a)). UV-B exposure is dangerous for human beings as it can cause cancer, cataracts and 

burns etc. It has some health benefits such as it induces skin to synthesize vitamin D. The 

figure 1.9 (b) shows the optimal exposure limits for UV radiation. 

UV-C(200nm-280nnm): This part of UV radiation emitted from sun is mostly absorbed by 

ozone layer. UV-C radiation is useful for applications such as disinfecting water, medical 

equipment etc. 

Vacuum UV(10nm-200nm): This radiation is strongly absorbed by molecular oxygen 

present in air. One major application of this part of UV radiation is in extreme UV 

lithography (193nm) for integrated circuit (IC) manufacturing.  

Figure 1.9(b), shows the safe exposure limits (maximum) corresponding to 

different UV wavelength bands (H. Chen, Liu, Hu, Al-Ghamdi, & Fang, 2015). 

 

 
 

Figure 1.9 (a) Solar radiation spectrum. (b) A graph showing the maximum UV exposure 

limits at different UV wavelengths for safety purposes. 
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Further, the detection of the UV light is also important for various applications such 

as in defense for plume detection, flame sensing, and also as biological and chemical 

sensors (M. Razeghi & Rogalski, 1996). For instance, in flame sensing applications, the 

UV detectors can detect the UV radiation emitted at the time of ignition. The UV detectors 

can be categorized as either solar-blind or visible-blind UV detectors based on the long 

wavelength absorption cutoff(𝜆cut-off) of these detectors. Here the term “blind” refers to 

insensitiveness of the detector to photons of particular wavelengths. Solar-blind UV 

detectors are those UV detectors with 𝜆cut-off below 280nm and visible-blind UV detectors 

are the UV detectors with 𝜆cut-off below 400nm. 

In general, the photodetectors are classified into two categories: photon detectors 

and thermal detectors (see figure 1.10) (M. Razeghi & Rogalski, 1996) depending on how 

they operate. In photon detectors an electrical output signal is produced as a consequence 

of absorption of incident light by the detector material. In thermal detectors, on the other 

hand, the incident photons cause a change in the temperature of the detector. These 

temperature changes of the detector are studied as a function of changes in some 

temperature dependent material property for e.g., such as changes in resistance with 

temperature. 

Photoelectric detectors are commonly used UV detectors among different UV 

photon detectors. 

Photoconductive detectors: In these detectors, the conductivity of the semiconductor 

material changes due to photogenerated current resulted from the absorption of the 

incoming photons. The conductivity changes as a function of intensity of incident light. 
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Photovoltaic detectors: In these devices, a voltage is generated under optical illumination. 

These are typically junction devices such as pn diode, pin diode, Schottky diode etc. where 

each region has a majority carrier type contributing to the conductivity. 

Photo-emissive detectors:  These detectors use photoelectric effect for their operation. 

When photons of sufficient energy strike the surface of these detectors, electrons will be 

emitted and are collected in the external circuit. 

 

 
 

Figure 1.10 Classification of Ultraviolet photon detectors. 

 

In addition to these basic types of photodetectors, there also exists phototransistors, 

which are similar to photodiodes with an additional gain resulting from the transistor 

action. These are particularly useful for detecting weak optical signals. Refer to (M. 

Razeghi & Rogalski, 1996), for more details on the basic operation principles, advantages 

and disadvantages of various kinds of photodetectors.  

The basic performance metrics that are used to characterize and compare the 

performance of different photodetectors are described below. 
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Responsivity(R): 

The responsivity(R) is defined as the number of amperes of photocurrent generated per 

watt of incident optical power. It is related to quantum efficiency(η) and gain(g) of the 

device as given by the equation: 

𝑅 =
𝑞𝜆

ℎ𝑐
𝜂𝑔     (1.1) 

where 𝜆 is the incident light wavelength, q is the electron charge, h is the Planck constant, 

c is speed of light. The quantum efficiency (η) can be defined as the ratio of flux of e-h 

pairs generated to the flux of photons incident on the photodetector. 

Response time or Speed: 

The response time(τ) or speed is the time required for an optical detector to respond to 

optical input. It is defined as the time taken by the photocurrent to reach 90% of its 

maximum value from 10% in steady state under illumination. The response time or speed 

values are therefore can be measured experimentally from the ON or OFF transient 

responses. Additionally, the bandwidth(B) of a photodetector is then calculated from the 

response time(τ) using the equation: 

𝐵 =
1

2𝜋𝜏
     (1.2) 

Noise Equivalent Power(NEP) and specific detectivity(D*) 

The ability of a photodetector to detect the incident radiation is limited by the noise 

generated by both incoming photons and also the current fluctuations generated by the 

detector itself. For photodetectors, in general, there are four main sources for noise, which 

includes thermal (or Johnson) noise, shot noise, 1/f (or flicker) noise and photon noise. 

Among these, photon noise or radiation noise is considered as external noise whereas 



www.manaraa.com

21 

 

thermal noise, shot noise and flicker noise are considered as internal noises of the detector. 

Later, in chapters 4 and 5 of this dissertation, characterization of these internal noise 

parameters in our UV photodetector devices will be discussed.  

Thermal noise is present in any resistive material, and noise current corresponding 

to thermal noise is given by the equation: 

⟨𝑖𝑡ℎⅇ𝑟𝑚𝑎𝑙
2 ⟩ =

4𝑘𝑇

𝑅
𝐵    (Eq.1.3) 

where k is the Boltzmann’s constant, T is absolute temperature, B is the bandwidth of the 

measurement system and R is the resistance of the material. This noise has its origin in 

electron density fluctuations due to temperature in a conducting material. Therefore, to 

reduce this thermal noise, the photodetectors need to be operated at low temperatures. 

The shot noise is associated with the random nature, typically follows Poisson’s 

distribution, of generation and collection of charge carriers in the photodetector.  The shot 

noise in photodetectors is given by the equation: 

⟨𝑖𝑠ℎ𝑜𝑡
2 ⟩ = 2ⅇ𝐼𝑑𝑎𝑟𝑘𝐵    (Eq.1.4) 

Similarly, shot noise under illumination is given by the equation: 

⟨𝑖𝑠ℎ𝑜𝑡
2 ⟩ = 2ⅇ𝐼𝑝ℎ𝑜𝑡𝑜𝐵    (Eq.1.5) 

where e is the electron charge, Idark is the dark current, Iphoto is the photocurrent and B is 

photodetector bandwidth. Therefore, it is important to reduce the dark current in 

photodetectors to minimize the shot noise in photodetectors. Typically, the UV detectors 

based on WBG materials such as SiC and GaN have low shot noise compared to narrow 
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bandgap materials such as Si due to very low intrinsic carrier concentration(ni) in WBG 

materials leading to low dark currents.  

In case of flicker noise or 1/f noise, the noise current is inversely proportional to 

frequency (or bandwidth) of the photodetector. The origin for this flicker noise is not well 

understood and is still a debatable topic in the scientific community. Two popular models 

explained the flicker noise current are proposed by Hooge and McWhoretel. Hooge’s 

model (Hooge, 1994) explains the 1/f noise by considering the fluctuations in the mobility 

of free carriers, and McWhoretel’s model (McWhorter, 1957) uses fluctuations in the 

carrier density to explain the flicker noise.  In general, 1/f noise appears to be associated 

with the presence of potential barriers at the contacts, surface trapping phenomena, and 

surface leakage currents. To minimize the effect of 1/f noise contribution, the 

photodetectors with high speed (<µs) are good for practical applications as these devices 

can operate at frequencies >100Hz  

Typically, photodetectors differ in their operation principle, gain and readout 

electronics. Therefore, the noise in photodetectors cannot be compared directly by 

comparing their noise currents. For this purpose, we use a parameter called noise equivalent 

power(NEP) to compare the performance of the photodetectors. The NEP of a 

photodetector is the minimum detectable optical power, and is defined as the ratio of the 

noise current to responsivity given by the equation:  

𝑁𝐸𝑃 =  
√⟨𝑖𝑛

2⟩

𝑅
     (Eq.1.6) 

where <i2
n> is the total rms noise current and R is the responsivity. 
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Specific detectivity is another parameter that is used to compare the noise 

performance of photodetector devices with different areas. It is calculated by using the 

equation: 

𝐷∗ =  
√𝐴×𝐵

𝑁𝐸𝑃
     (Eq.1.7) 

where A is the active area of the photodetector, B is the detector bandwidth and NEP is the 

noise equivalent power.  

1.4 WIDE BANDGAP SEMICONDUCTOR UV DETECTORS 

Photomultiplier tubes (PMTs) have been used for a long time for UV detection since they 

offer high responsivities. But these PMT’s are fragile, need large power supplies which 

makes these detector systems bulky and expensive, and thus prohibits their use in practical 

applications. Later solid-state UV detectors based on semiconductors, specifically Si, 

gained popularity due to their low weight and reliability. Although Si based UV detectors 

became popular for commercial applications, they are sensitive to visible light, and 

therefore required to be used with optical filters that block the visible light (Manijeh 

Razeghi, 2002). Also, the narrow bandgap Si(Eg=1.1eV) UV detectors have disadvantages 

such as ageing, high dark current and also not suitable for operation in high temperature 

environments. Therefore, UV photodetectors based on wide bandgap semiconductors like 

4H-SiC (Eg=3.26eV), GaN(Eg=3.4eV) are better choice for visible-blind UV detection, and 

can be operated in high temperature and harsh environment conditions due to high radiation 

and chemical hardness (E Monroy, Omnes, & Calle, 2003), (Wright & Horsfall, 2007) . A 

variety of devices structure such as pn diode, pin diode, Schottky diode, MSM diode, 

phototransistor etc. based on wide bandgap SiC and GaN semiconductor materials have 
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been reported in the literature for UV detection applications (E Monroy, Omn s, & Calle, 

2003)  

The AlxGa1-xN material system has a direct bandgap that can be varied from 

Eg=3.4eV (𝜆cut-off=365nm) to Eg=6.2eV (𝜆cut-off= 200nm), by varying the Al mole fraction 

from x=0 to 1 (Yoshida, Misawa, & Gonda, 1982). As a result, as shown in Figure 

1.11(Walker et al., 1996), the long wavelength absorption cutoff (λcut-off) in these material 

systems can be tuned between either 365nm and 200nm suitable for visible blind and solar-

blind UV detection. The UV detectors fabricated using ultra-wide bandgap (UWBG) 

AlxGa1-xN (x>0.4, i.e. Eg>4.3eV, λcut-off<290nm) become a good choice for solar-blind UV 

detector applications. 

 

 
 

Figure 1.11 (a) Bandgap and cutoff wavelength of AlxGa1-xN dependent on Al mole 

fraction(x). (b)Normalized spectral response of AlxGa1-xN photoconductors with different 

Al mole fraction (x). 

 

For a long time, the major limitation for SiC and GaN based UV detectors is their 

low UV responsivities due to reflection/absorption losses caused by metal electrodes used 

in these detectors. To solve this problem, several groups have used transparent metal 
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electrodes such as Ni/Au, Ti, Ti/W and ITO, for enhanced photo response in the UV region 

(E Monroy, Omnes, et al., 2003). These transparent metal electrodes although show 

improved performance still suffer from low UV transmittance which is under 80% (see 

table 1.2). More recently, few groups have successfully demonstrated SiC and GaN UV 

detectors by using high conductivity graphene as an electrode material. The high 

conductivity graphene is shown to be highly transmittance and negligible absorption in the 

UV wavelength regime, with >90% transmittance and 0.6% absorption per monolayer, 

(i.e.~0.3nm) from 200nm-400nm.  

Table 1.3 Comparison of performance of different UV detectors by using different metal 

electrodes. 

 

 

S.No. Detector type 
Electrode 

material 
Transmittance Responsivity(R) 

1 
4H-SiC Schottky (A. 

Sciuto et al., 2007) 
Ni2S N/A. 

160mA/w 

at 254nm 

2 
GaN MSM (Wang et 

al., 2006) 

10nm thick 

TiW 

75.1% 

at 

300nm 

~0.15A/W at 

300nm 

3 
4H-SiC MSM (Yan 

Kuin Su et al., 2002) 
ITO >40% at 300nm N/A. 

4 
GaN MSM (Y. K. Su et 

al., 2002) 
ITO >90% 

~7A/W at 

360nm 

5 

4H-SiC MSM 

(Kusdemir, Ozkendir, 

Firat, & Celebi, 2015) 

Graphene 
>90% (200-

400nm) 

~10mA/W at 

254nm 
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Table 1.3 compares the optical transmittances of various metal contact electrodes 

used in SiC and GaN UV detectors. Graphene forms a Schottky junction with 

semiconductors such as Si, GaAs, 4H-SiC and GaN (Tongay, Schumann, & Hebard, 2009), 

(Tongay et al., 2012). Also, Schottky contact based UV detectors show superior photo-

response compared to p-i-n UV detectors, in short UV wavelength regime, due to charge 

carrier generation near the strong built-in electric fields created near the top surface 

(Antonella Sciuto, Roccaforte, Franco, Raineri, & Bonanno, 2006). In this present research 

work, our primary goal is to avoid the losses caused by metal electrodes in conventional 

detectors, by using natively grown graphene as a transparent conducting electrode to 

improve the quantum efficiency and therefore the responsivity of 4H-SiC UV detectors 

(chapter 3and chapter 4).  

On the other hand, AlxGa1-xN detectors as mentioned before, are suitable for solar-

blind DUV detection. Recently, high Al (x=0.65) content AlxGa1-xN based MQW detectors 

(Sakib Muhtadi, Hwang, Coleman, Lunev, et al., 2017) and MESFET detectors (JEM, 

under review) with very high responsivity in DUV regime, are demonstrated at USC. Also, 

a high Al content(x=0.65) AlxGa1-xN channel HEMT devices with high current handling 

capability suitable for high temperature operation are demonstrated (Sakib Muhtadi, 

Hwang, Coleman, Asif, et al., 2017). In this present work, these AlxGa1-xN channel 

(x=0.65) based HEMT device structure are studied (chapter-5) for their application as a 

high responsivity solar-blind UV detector for DUV detection. Finally, the major goal for 

the present research work is to develop high performance visible blind (𝜆cut-off<400nm) and 

solar-blind (𝜆cut-off<280nm) UV detectors i.e. UV detectors with high responsivity, high 

speed and high detectivity.  
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CHAPTER 2

EPITAXIAL GRAPHENE GROWTH ON SIC 

As explained in chapter 1, graphene can be used as a transparent electrode for improving 

the responsivities in SiC UV detectors. In this chapter, a brief introduction to graphene 

structure, material properties and applications is presented. Later, two major techniques for 

graphene growth, thermal sublimation of SiC and selective etching of Si from SiC using 

Tetrafluorosilane(TFS), developed at USC, will be discussed in detail. The motivation for 

this chapter is to provide a comparison of the EG/SiC junction properties grown using the 

abovementioned techniques, as it is important to understand the device characteristics of 

EG/SiC Schottky junction based phototransistors as will be discussed later in chapter 3 and 

chapter 4. 

2.1 PROPERTIES AND APPLICATIONS OF GRAPHENE 

Graphene is a single sheet of sp2-bonded carbon atoms arranged in a honeycomb lattice 

with a lattice constant of 0.14nm.  It is the basic building block of well-known carbon 

materials such as graphite, fullerene and carbon nanotubes (Figure 2.1). In a single layer 

graphene, the unit cell (one hexagon) consists of two carbon atoms (each atom shared by 

3 neighboring unit cells)—the A and B sub lattices (Figure 2.2(a)). The band structure of 

graphene exhibits two bands intersecting at two inequivalent points, K and K’, in the 

reciprocal space (see Figure 2.2) (Neto, Guinea, Peres, Novoselov, & Geim, 2009). 
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Figure 2.1 Structures of few important allotropes of carbon (a)graphene, (b)nanotube, 

(c)fullerene, (d)Diamond and (e)graphite. 

 

 

 
 

Figure 2.2 (a) Honeycomb lattice structure of graphene. The vectors δ1, δ2, and δ3 are the 

vectors connect the nearest neighbor atoms separated by a distance a=0.14nm. The vectors 

a1, a2 are the basis vectors of a triangular bravais lattice. (b) The Brillouin zone of graphene 

with reciprocal lattice vectors b1 and b2. The points K and K’ corresponds to the location 

of Dirac cones. 

 

The unique physical, chemical properties of graphene are determined by its 2D 

crystalline nature and the resulting band structure. The dispersion relation or band structure 

can be obtained by considering the interaction of carbon atoms to its nearest and next 

nearest neighbor carbon atoms in the crystal. As seen in Figure 2.2(a), each carbon atom 

has 3 nearest and 6 next nearest neighbors and the interactions between these atoms defines 

the energy dispersion relationship. The energy dispersion relation is given as: 

𝐸(𝑘) = ±𝑡√3 + 2 𝑐𝑜𝑠(√3𝑘𝑦𝑎) + 4 𝑐𝑜𝑠 (
√3

2
𝑘𝑦𝑎) 𝑐𝑜𝑠 (

3

𝑧
𝑘𝑥𝑎) (2.1) 
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,where k is the reciprocal lattice vector and t represents the interaction energy between the 

neighboring atoms. The interaction energy(t’) between the next nearest neighboring atoms 

is neglected in obtaining the above relation. 

The positive term corresponds to the conduction band and the negative term 

corresponds to the valence band as shown in Figure 2.3(a) (Neto et al., 2009). Near the 

zero-energy point, also called as Dirac point, the dispersion relationship appears as linear 

(blown-up diagram in Figure 2.3(a)). It is important here to note that semiconductor 

materials typically show parabolic dispersion relationship. Further, the valence and 

conduction bands meet at such 6 Dirac points K and K’ in the reciprocal lattice as shown 

in Figure 2.3(b) (Freitag, 2008). 

As shown in Figure 2.2(b), the two points K and K’ are referred to as the Dirac 

points as the electronic dispersion resembles that of relativistic Dirac electrons at these two 

points. The K and K’ points are defined as: 

𝑲 = (
2𝜋

3𝑎
,

2𝜋

3√3𝑎
); 𝑲′ = (

2𝜋

3𝑎
, − 

2𝜋

3√3𝑎
)   (2.2) 

The linear dispersion relationship near these K and K’ points and within ±1 eV of the Dirac 

point is given by: 

𝐸(𝑘) = ±ℎ𝜈𝐹|𝑘| = 𝜈𝐹√𝑘𝑥
2 + 𝑘𝑦

2    (2.3) 

,here 𝜈𝐹 is called the Fermi velocity and is given by the equation: 

𝜈𝐹 =
3𝑎𝑡

2ℏ
 ≈ 0.9 x 106 m/s    (2.4) 

Due to this linear dispersion relationship, the electrons and holes in graphene move with 

𝜈𝐹, and therefore called as Dirac fermions. Since the valence band and conduction band 

are degenerate at the Dirac points, graphene is considered as zero bandgap semiconductor. 
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Therefore, opening the band gap in this single layer graphene is important for the 

realization of semiconductor devices based on graphene. 

 

 
 

Figure 2.3 (a) Energy bands in monolayer graphene showing the conduction (upper one) 

and the valence band (lower one). The blown-up diagram shows linear relationship close 

to Dirac point where conduction band and valance band meet. (b) Low-energy electronic 

structure of graphene showing 6 Dirac points such points of contact. The vectors b1 and b2 

correspond to the reciprocal lattice vectors and two distinct corners of Brillouin zone are 

shown as K and K’. 

 

Graphene has exceptional material properties such as high carrier mobility>2x105 

cm2V-1s-1 (Bolotin et al., 2008), high optical transmission>90% (Bonaccorso, Sun, Hasan, 

& Ferrari, 2010), very high thermal conductivity ~5x103 Wcm-1K-1 (Balandin et al., 2008) 

high Young’s modulus 1500GPa (Lee, Wei, Kysar, & Hone, 2008) (for mechanical 

strength) etc. In addition to its high optical transmission in UV-visible regime, graphene 

also shows very low 1/f noise and thermal noise (Rumyantsev, Liu, Stillman, Shur, & 

Balandin, 2010) which makes it suitable for photodetector applications. Another interesting 

property of graphene is band gap tuning via applied electric field, molecular doping etc. 

(Singh, Uddin, Sudarshan, & Koley, 2014). Graphene due to its exceptional material 

properties has wide variety of applications such as in photodetectors, high speed transistors, 

chemical and biological sensors displays, batteries, hydrogen storage, solar cells etc. Figure 

2.4 shows the applications of graphene in various fields (Iyechika, 2010). 
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Figure 2.4 Properties of graphene and its applications in various fields. 

 

2.2 GRAPHENE GROWTH TECHNIQUES 

The properties of graphene were studied theoretically for the first time P. R. Wallace in 

1947 (Wallace, 1947), and he predicted the electronic structure and linear dispersion(𝐸 =

ℏ𝑘𝜈𝐹, 𝜈F is fermi velocity) in graphene. But, AK Geim and K.S. Novoselov, demonstrated 

the isolation of single layer graphene using mechanical exfoliation technique for the first 

time in 2004 (Kostya S Novoselov et al., 2004). Graphene is the first 2D crystalline material 

(i.e. one atom thick) isolated in nature. Since the first demonstration of obtaining single 

layer graphene by Geim and Novoselov, graphene has attracted much interest due to its 

unique materials properties and technological applications. Although, high quality 

graphene is obtained by mechanical exfoliation method, the practical use of this technique 

is limited as large area graphene growth is not possible which is important for wafer scale 

manufacturing. Later, many techniques have been developed to grow graphene that 

includes chemical vapor deposition (Kim et al., 2009), thermal sublimation technique 



www.manaraa.com

32 

 

(Emtsev, Speck, Seyller, Ley, & Riley, 2008), reduction of graphene oxide (Pei & Cheng, 

2012), liquid phase exfoliation (Blake et al., 2008) etc. Among these techniques, CVD and 

thermal sublimation became popular as these techniques allow to grow large area graphene 

suitable for wafer scale manufacturing (K. S. Novoselov et al., 2012).  

 

 
 

Figure 2.5 Comparison of quality and production costs of graphene grown using different 

growth methods (K. S. Novoselov et al., 2012). 

 

Several research groups have reported graphene growth by using CVD process, on 

transition metals such as Ni (Mattevi, Kim, & Chhowalla, 2011), Ir (Coraux, N’Diaye, 

Busse, & Michely, 2008) and Ru (Sutter, Flege, & Sutter, 2008). For device applications, 

graphene grown on transition metals in CVD method need to be transferred onto 

semiconducting substrates. Two popular methods for the transfer of CVD graphene grown 

on metals is thermal release tape method and PMMA method (G. Deokar, 2015, Carbon). 

The transfer process of graphene onto semiconductors, however, introduces defects in the 

transferred graphene layer (Lupina et al., 2015), thus making the CVD transferred graphene 
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inferior for device applications.  Therefore, it is important to grow graphene directly on 

semiconducting substrates such as SiC for mass producing graphene for various device 

applications, particularly for electronic and optoelectronic device applications. The Figure 

2.5 shows the price and the quality of graphene obtained by using different techniques (K. 

S. Novoselov et al., 2012). 

2.3 EPITAXIAL GRAPHENE GROWTH BY THERMAL SUBLIMATION 

OF SIC  

In this technique the SiC substrate is heated to high temperature ~1300-1600°C either in 

vacuum or inert environment such as Ar. At this high substrate temperature, the Si atoms 

desorb from the surface as the vapor pressure of Si higher than that of carbon at the surface, 

and this leads the formation of a C-rich layer on the SiC surface (reaction1 in Table 5.1):  

SiC(s)  Si(g) + C(s)     (2.5) 

The growth process can be divided into three basic steps, (i) Si desorption (ii) C 

rearrangement by diffusion and (iii) nucleation of C atoms (K. S. Novoselov et al., 2012). 

Among these three steps, Si desorption is the controlling step for the growth process. The 

figure below shows the recipe (Biplob K. Daas, 2012) for graphene growth process by 

using thermal sublimation of SiC in vacuum. The 2-3 ML thick EG obtained using this 

recipe is used for fabricating EG/SiC phototransistors devices in chapter 3 is grown using 

this recipe. 
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Figure 2.6 Recipe for EG growth using thermal sublimation technique. 
 

When a single crystal graphene layer is formed, growth of subsequent graphene 

layers is not possible as the out-diffusion of Si atoms through graphene layer is not 

permitted due to large size of Si atoms when compared to C atoms in the graphene layer at 

the top (Figure 2.7 (a)) (B. K. Daas et al., 2012). After the first graphene layer is formed at 

the top, the formation of subsequent graphene layers has to happen by the evaporation or 

removal of Si atoms from the SiC surface underneath this graphene layer. It is explained 

(Shetu et al., 2013), by using BCF theory, that Si atoms diffuses laterally through defects 

and grain boundaries present in the graphene layers already grown at the top (Figure 2.7 

(b)) (Shetu et al., 2013).  The growth of multi-layer graphene takes place in bottom up 

scheme.  

The EG thickness can be controlled by changing the temperature and time, as well 

as the choice of SiC substrate orientation (Dresselhaus & Dresselhaus, 2002). The 

sublimation growth of graphene is studied both on polar (Si-face and C-face) and non-polar 

faces (a and m planes) of 6H-SiC (Shetu et al., 2013). It was shown that graphene growth 

on Si-face is slow and is limited to 3-4 ML whereas on C-face the graphene growth is faster 
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with thicknesses >30ML (Shetu et al., 2013)  (Luxmi, Srivastava, He, & Feenstra, 2008). 

Additionally, the surface morphology of graphene layers grown on Si-face is better, as seen 

by AFM, compared to graphene layers grown on C-face (Luxmi et al., 2008). Therefore, 

epitaxial graphene growth on SiC is mostly done on Si face. 

 

 
 

Figure 2.7 (a) The silicon atom has a much larger diameter than the atomic gap in a 

graphene layer. Si-loss can only occur through defects. (b) Schematic of defects in 

graphene, and how they mediate molecular in-diffusion for doping and Si-adatom out-

diffusion for growth of EG. 
 

In case of EG growth on Si-face, the first layer carbon atoms formed is covalently 

bonded with the Si atoms on SiC(0001) (or Si-face), which has a (6√3 × 6 √3) R30◦ 

periodicity with respect to the hexagonal SiC (0001) surface, so that it preserves the σ but 

lacks the π bonds of graphene (Emtsev et al., 2008). This carbon layer formed during the 

early stage of graphene growth is also called as zero-layer graphene or the buffer layer 

(Figure 2.8(a)) since it does not exhibit the electronic properties of graphene.  

Further, this buffer layer introduces donor states that effectively creates n-type 

doping in the graphene layers grown above it (Emtsev et al., 2008). Additionally, this 

buffer layer is known to be detrimental for the charge carrier mobility in the graphene 
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layers on top of it. Unpaired electrons of the buffer layer (that derive from an unpassivated 

SiC surface band) lead to a series of partially occupied localized states that pin the Fermi 

level of the graphene over-layer, such that the Dirac point (ED) and the Fermi level (EF) no 

longer coincide (Emtsev et al., 2008): Δ = EF − ED > 0. This is the origin of the observed 

n doping. 

 

 
Figure 2.8 Side view models for (a) the (6√ 3×6 √ 3)R30° reconstruction of SiC(0001) 

(”zero-layer”) and (b) epitaxial monolayer graphene. After hydrogen intercalation (c) the 

zero-layer and (d) monolayer graphene are decoupled from the SiC substrate (Riedl, 

Coletti, Iwasaki, Zakharov, & Starke, 2009). 

 

Figure 2.9 shows the graphene/SiC Schottky junctions formed when graphene is 

grown on both p-type and n-type SiC epi-layers. As shown, the fermi-level of graphene is 

pinned to the conduction band of SiC (Varchon et al., 2007). The reason for this fermi-

level pinning is explained by the dangling bonds present at the zero-layer graphene and 

SiC interface. Further, as shown in Figure 2.8(c) and(d), the fermi-level can be unpinned 

by saturating the dangling bonds present on SiC surface using different techniques such as 

H-intercalation (Riedl et al., 2009). Because of H-intercalation, the dangling bonds no 

longer exists at this interface and the fermi-level is now becomes unpinned. The buffer 
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layer, therefore, now becomes an additional, free standing, graphene monolayer as shown 

in Figures 2.8(c) and 2.8(d). 

 

 
 

Figure 2.9 (a)Band diagrams for EG/p-Schottky junction before H-intercalation. As shown 

here, the graphene fermi-level is pinned to the conduction band edge of SiC (Anderson et 

al., 2015). (b) Band diagram of EG/p-SiC Schottky junction after H-intercalation. The 

fermi-level is now shifted by 0.3eV and therefore Vbi is also reduced. In this case, the EG 

fermi-level is not pinned to p-SiC conduction band. 

 

2.4 GRAPHENE GROWTH BY SELECTIVE ETCHING OF SI USING 

TFS 

The time required for EG growth using thermal sublimation is relatively high, as the 

process is limited by the slow evaporation of Si liquid droplets formed at >1400°C, making 

this method inefficient for practical applications. Additionally, this method is not suitable 

for growing thick graphene layers for applications such as in hydrogen storage (Luo et al., 

2009), emission sensing (Biplob K. Daas et al., 2012) etc. To address this issue, a novel 

technique for EG growth on SiC by using TFS gas was developed recently at USC (Tawhid 

Rana et al., 2015). 
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As explained in chapter 1, the first step in SiC epilayer growth, using step controlled 

epitaxy, is etching SiC substrate to remove subsurface damage due to polishing. Although 

H2 is routinely used for SiC etching step, this etching process is rather slow compared to 

SiC etching using both H2 and TFS. This TFS can also be used to grow EG graphene as 

described below. 

Table 2.1 Gibbs free energy (kcal/mol) for SiC dissociation and SiF4 reactions (Tawhid 

Rana et al., 2015). 

 

S.No. Reaction Gibbs Free Energy (in kcal/mol) 

 

Dissociation and evaporation 

reactions for thermal sublimation 

growth 

1800K 

(~1527°C) 

1900K 

(~1627°C) 

2000K 

(~1727°C) 

1 SiC(s) → Si(g) + C(s) 58.19 54.60 51.183 

1a SiC(s) → Si(l) + C(s) 12.90 12.00 11.116 

1b Si(l) → Si (g) 45.29 42.59 39.904 

 
SiF4 reactions for graphene growth 

by Si selective etching 
   

2 Si (l) + SiF4(g) → 2SiF2 (g) 19.69 15.93 12.22 

3 C(s)+1/4 SiF4→CF+1/4 Si(g) 107.83 103.65 99.52 

4 C(s)+1/2 SiF4→CF2+1/2 Si(g) 128.23 124.16 120.19 

5 4C(s) + 3SiF4 → 4CF3 + 3Si(g) 184.63 180.62 176.69 

6 C(s) + SiF4 → CF4 + Si(g) 211.04 206.36 204.56 

7 2C(s)+1/2SiF4→C2F2+1/2Si(g) 175.24 171.05 175.24 

 

The novel EG growth technique using TFS precursor described here is basically an 

extension to thermal sublimation technique. In this technique, similar to thermal 

sublimation, when the SiC substrate is heated to a temperature >1400°C, the Si(l) droplets 

(step 1) are formed due to much high partial pressure of Si atoms. Now, when these Si(l) 
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droplets see a TFS gas molecule near the SiC surface, they can easily react with TFS 

molecules to form SiF2 gas (reaction 2 in Table 2.1), and these SiF2 molecules can be easily 

taken out from the growth reactor (as shown in steps II and III in Figure 2.10). Finally, the 

C atoms on the surface rearranges themselves to form the graphene layer (step IV in Figure 

2.10). Additionally, at 1600°C, the liquid Si droplets reacts readily with TFS gas (reaction 

2 in Table 2.1) as much less energy is required (Gibbs free energy, ΔG=19.69 kcal/mole) 

for this reaction. Therefore, the reaction between liquid Si droplets and TFS gas is 

thermodynamically more favorable when compared to evaporation of Si droplets which 

requires high energy (Gibbs free energy ~45.29 kcal/mole). Also, the reaction of SiF4 

molecules with C atoms in SiC is less favorable due to high Gibbs free energy (211 

kcal/mole) associated with these reactions. (reactions 3-7 in table 2.1). 

 

 
 

Figure 2.10. Reaction steps involved in epitaxial graphene growth using SiF4. Dissociation 

and Si(l) formation at temperatures >1400°C. II), III) Si(l) droplets are removed efficiently 

by SiF4 as SiF2 gas. IV) Residual C atoms on the surface forms single layer of graphene 

(Tawhid Rana et al., 2015). 
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In this study (Tawhid Rana et al., 2015), graphene layers were grown on SiC by 

varying the growth duration. From the Raman analysis of these samples, it was shown that 

graphene thickness can be varied as a function of growth duration (Figure 2.11) (Tawhid 

Rana et al., 2015) indicating the potential for thick-film growth. Also, the graphene peaks 

present in samples treated with Ar and TFS at 1400°C, gave much better quality of 

graphene as indicated by lower D/G ratio (<0.2). 

 

 
 

Figure 2.11 (a) Comparison of Raman analysis (without substrate subtraction) of surface 

treatment of 4H-SiC substrate for:I. substrate surface before treatment, II. surface treated 

for 60 min at 10 slm of Ar flow rate without SiF4. Surface treated for III. 1 min at 10 slm 

of Ar flow rate with addition of 10 sccm of SiF4 flow rate and subsequently for similar 

conditions with SiF4: IV. 10 min, V. 30 and 60 min. (b) Raman analysis of epitaxial 

graphene at various temperatures for a duration of 60 min at Ar and SiF4 flow rates of 10 

slm and 10 sccm respectively while keeping the growth pressure at 300 Torr; I. no 

observable G-peak at a growth temperature of 1300 °C. II=III. A sharp elevation of G-

peak, D-peak, and 2D-peak was observed at 1400 °C. IV. Lowest intensity of D-peak was 

observed at 1600 °C compared to layer grown at 1400 and 1500 °C. (Tawhid Rana et al., 

2015). 

 

Although, the increase in G peak intensity is a clear indication of thick film growth 

the actual thickness is not calculated, by XPS or FTIR, in the previous study. The 

measurement of graphene thickness is critical for practical applications such as in optical 
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detection where optical absorption by graphene increases with thickness. Further, electrical 

characteristics of the EG/SiC Schottky barrier junction such as ideality factor, barrier 

height etc. are not studied. The understanding of these electrical properties is key to use 

EG/SiC Schottky junction devices for practical applications such as in UV detection. The 

next section discusses the variation in thickness of EG grown on SiC, using TFS precursor, 

with time as measured by XPS. Also, EG/n-SiC Schottky diode fabrication and 

characterization is discussed to understand the electrical characteristics of the Schottky 

junction. 

2.4.1 GRAPHENE GROWTH BY SELECTIVE ETCHING OF SI USING 

TFS: EFFECT OF COOLING RATE ON THE EG QUALITY AND EG/SIC 

INTERFACE ELECTRICAL PROPERTIES 

As mentioned above, previous work by Rana (Tawhid Rana et al., 2015) was the first study 

for the development of controllable epitaxial graphene growth using TFS. Recently 

(Balachandran, 2017), EG growth on SiC using TFS is studied by varying the temperature 

during the reactor cooling process after the EG growth. The main purpose of this study is 

to understand the effect of cooling rate (thermal stress) on the morphology of EG and 

interface properties of EG/SiC Schottky junctions, that will affect the EG/SiC device 

properties (chapter 4). 

Experimental details 

For this study, nitrogen doped (~1019cm-3), chemical-mechanical polished (CMP), 

commercial 4H-SiC substrates with various off cuts (~0°, 4° and 8°) as well as epilayers(n-

type) grown on 8° 4H-SiC substrates were used. Samples were cleaned by standard RCA 
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cleaning method. All the graphene epitaxial growths were performed on the Si-face of the 

substrates/epilayers in a vertical hot-wall CVD reactor which is also used for SiC epilayer  

 
 

Figure 2.12 (a) The CVD growth reactor for EG growth on SiC, and (b) Process recipe for 

EG growth on SiC using TFS gas precursor. (A cooling rate of 14°C/min (or 60 minutes) 

is shown here for the temperature ramp down from 1600°C to 750°C). No surface pre-

etching is done prior to the EG growth. 

 

growth (Figure 2.12 (a)).  The substrate was initially baked at 750°C in vacuum to remove 

any unwanted background impurities present inside the reactor. Then 6 slm Ar carrier gas 

flow was initiated to attain the growth pressure (300 torr). The temperature is ramped up 

to 1600°C from 750°C in ~20 minutes, at which point SiF4 (Tetrafluorosilane or TFS) flow 

(60sccm) was initiated for the graphene growth for a duration of 10 min. Note that, no H2 

pre-etching was performed prior to the graphene growth step. Finally, the temperature was 

ramped down from the growth temperature to 750°C while flowing 6 slm Ar gas to 

maintain the 300 Torr pressure during the ramp down. Three different growth experiments 

were performed where the ramp down rate is different in each experiment. The ramp down 

rates used for these experiments were ~56°C/min (15 min), ~28°C/min (30 min) and 
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~14°C/min (60 min). Figures 2.12(a) and 2.12(b) show the growth reactor and process 

recipe used for the EG growth in this present study. 

Characterization results of epitaxial graphene/4H-SiC 

The characterization results of EG/SiC samples grown at different cooling rate are 

discussed below. 

Atomic force microscopy (AFM) study:  

The tapping mode atomic force microscopy (AFM) is used to study the surface morphology 

of graphene grown in these experiments. AFM height and phase images (5µm×5µm sizes) 

were recorded at different positions on the graphene layers. The surface roughness values, 

obtained from height images (Figure 2.13) for EG grown on different offcuts is found to 

vary for different cooling rates. The surface roughness for EG grown on on-axis substrates 

does not show obvious dependence on the cooling rates. For EG grown on 8° substrates, 

the best surface morphology is seen for the slowest cooling rate (14°C/min). On the other 

hand, the AFM phase images (Figure 2.14) of EG the grown on different offcuts for 

different cooling rates show interesting features. It is seen that the EG growth on on-axis 

substrates exhibit uniform phase images (thick graphene growth seen only at the step 

edges) irrespective of the cooling rates. For EG grown on 4° and 8° offcuts, the AFM phase 

images shown thick graphene nucleation, termed as ‘cracking’ at random areas on the 

surface at different ramp down rates. The cracking phenomenon is attributed to mismatch 

in the thermal conductivity of EG and underlying SiC epi-layer and substrate. This cracking 

is observed to be uniform at the step edges for the slowest ramp down rate (14°C/min) for 

both 4° and 8° substrates and 8° epilayers. 
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Figure 2.13 AFM height images (5 x 5 m2) of epitaxial graphene films grown on different 

offcuts of 4H-SiC substrates. 

 

 
 

Figure 2.14 AFM phase images (5 x 5 m2) of epitaxial graphene films grown on different 

offcuts of 4H-SiC substrates. As shown the regions with cracks are marked in boxes. 
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Table 2.2 Summary of AFM phase image study (Figure 2.13) of EG grown on different 

off-cut substrates for different temperature ramp down rates. 

 

 

The cracking phenomenon observed in the EG grown on off-oriented surfaces can 

be related to the increased kink density on the stepped surfaces (Robinson et al., 2009) 

which also contributes to the increase in EG surface roughness. As will be discussed later, 

the effect of crack densities seen for different ramp down rates can be correlated to the 

interface properties, by studying the electrical properties, such as the barrier height and 

ideality factor of the EG/SiC Schottky diodes. 

Raman spectroscopy study 

The Raman spectra of the graphene layers grown for all the ramp down rates are recorded 

using a Horiba micro Raman setup with laser excitation wavelength at 450nm and a spot 

size of ~2µm. These Raman maps (Figure 2.15(a)) show the peaks at 1350cm-1, 1580cm-1 

and 2700 cm-1, typically observed in EG grown on SiC (Ni et al., 2008), corresponding to 

D, G and 2D peaks respectively. The D/G ratio indicates the presence of defects in the 

graphene layers and the closer the D/G ratio to 0 the better is the quality of graphene 

(Terrones et al., 2010). These defects may be a result of surface dislocations, the 

corrugation, the vacancies and the interaction of graphene with substrate (Cançado et al., 

2011). In general, this D peak is not observed in graphene obtained using mechanical 

exfoliation technique (Ni et al., 2008). Figures 2.15 (b) and  2.15(c) show the D/G ratio 

Sample type 

Ramp  

down rate 

On-axis 4° offcut 8° offcut 
8° offcut- 

epilayer 

56°C/min No Yes Yes Yes 

28°C/min No Yes Mild Mild 

14°C/min No May be Very mild No 
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and the 2D peak widths for all these samples plotted as a function of cooling rate. It is clear 

from Figure 2.14 (c), the D/G ratio for all the samples is <0.2, indicating better graphene 

quality and similar to D/G values reported previously by T.Rana (Tawhid Rana et al., 

2015). 

 

 

 
 

Figure 2.15 (a) Raman spectrum of EG samples grown on SiC for different growth times 

and cooling rates. (b) Peak intensity ratio(ID/IG) of D and G peaksand and (b)2D peak width 

of EG layers grown for different cooling rates on different offcut substrates and epi-layers 

at 1600°C. 
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The 2D peak in EG Raman spectrum is an indicator of the stacking order of the 

material. The Raman spectra of all graphene samples showed a symmetric 2D peak that 

could fit well with a single Lorentzian instead of split-peak seen for Bernal stacked 

graphene/graphite (Terrones et al., 2010). Ideal Bernal stacked graphite has a split 

asymmetric 2D peak, with each sub-peak corresponding to AB stacking responsible for 

graphene’s linear electron dispersion. This shows that these films are not AB Bernal-

stacked as seen usually with Si-face epitaxial graphene obtained by thermal sublimation, 

but instead have turbostratic, or mixed stacking (Garlow et al., 2016). 

Further, the full-width at half-maxima(FWHM) of the 2D peaks of these graphene 

layers (Figure 2.15(b)) are in the range of 53-73 cm-1 indicating mobility values in  the 

range of 102-103cm2/V-s (Robinson et al., 2009). Also, the mobility values calculated using 

Hall measurement data on the TFS grown graphene layers is 700cm2/V-s which is in 

excellent agreement with the mobility values from FWHM of 2D peak (Robinson et al., 

2009). 

X-ray Photoelectron Spectroscopy (XPS) study 

X-ray photoelectron spectrum measurements were done to estimate the thickness of the 

graphene layers (Cumpson, 2000). The details for XPS measurement and thickness 

calculations of the EG layers from the XPS results can be found elsewhere (Balachandran, 

2017). 

The thicknesses of EG grown on 4° offcut substrates estimated using XPS 

measurement data, for different ramp down rates, are shown in Figure 2.16. It is clear from 

these results that thicker graphen layers can be grown efficiently for small growth duration 

(10 minutes), compared to 60 minutes in sublimation, by using TFS to remove Si(l) 
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droplets efficiently. In a similar EG growth experiment using TFS, the thickness of EG is 

estimated as 2-3ML, using XPS analysis (not shown here), for 2 minutes growth (cooling 

rate=14°C/min). These results indicates that EG thickness varies linearly with growth 

duration using TFS precursor. It can be concluded that a typical growth rate of 1.5 ML/min 

is possible for EG grown on SiC using TFS in Ar ambient at 1600°C. 

  

 
(a) 13.9 ML 

 
(b)14.9 ML 

 
(c) 11.15 ML 

 

Figure 2.16 XPS data (Gaussian curve fitted) and thicknesses of EG grown on 4° offcut 

substrates for 10 minutes growth duration (a) 14°C/min, (b) 28°C/min and (c) 56°C/min 

ramp down rates. 

 

EG/n-SiC Schottky diodes fabrication and electrical characterization results 

To study the electrical properties of the epiaxial graphene/SiC inetrface, Schottky diodes 

fabricated using the graphene/n-SiC epilayer samples, grown on 8° off-cut n+-SiC, 

substrates from each ramp down experiment. The thicknesses and doping of the epilayers 

used in this study for 14°C/min, 28°C/min and 56°C/min ramp down rates are 26 µm and 

1.6x1014 cm-3, 6.2 µm and 2x1015 cm-3, and 12 µm and 4.5x1014, respectively. 

The fabrication process flow is schematically given in Figure 2.17. The mask 

pattern is transferred onto the EG layer by exposing the photoresist coated EG sample 

under 365nm UV light exposure using mask aligner and subsequent development in 

buffered KOH developer solution. Later, graphene mesa patterns are formed by etching the 

EG using O2 plasma in a reactive ion etching (RIE) chamber. Here photoresist as a mask 
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for the EG mesa pattern and is removed after RIE process by dissolving it in acetone 

solution. 

 
 

Figure 2.17 Fabrication process steps for EG/SiC vertical schottky diodes. 

 

Current – Voltage characteristics of EG/n-SiC Schottky diodes 

The Current-voltage (I-V) characteristics are measured for the EG/SiC Schottky diodes 

corresponding to three cooling rates. From these I-V test results (Figure 2.18(a)), the diode 

ideality factor(η), leakage current(I0) and resistances (series and shunt) are calculated for 

all the devices (3 different size diodes, with EG mesa diameters 120µm, 180µm and 

250µm) present on the Schottky diodes. The ideality factors (shown in Figure 2.18(b)) for 

the devices corresponding to slow and medium cooling rates is η=1.1 indicating better 

Schottky diode behavior compared to devices corresponding to fast cooling rate for which 

the ideality factor is η=1.3. The poor ideality factor in case of devices fabricated using EG 

grown in fast cooling rate experiment are can be attributed to thermal stress due to “cracks” 

formed at the EG and SiC interface causing the non-uniformity in the EG-SiC interface.   
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Figure 2.18 (a) Forward I-V characteristics, and (b) average ideality values for EG/n-SiC 

Schottky diodes at different ramp down rates with three different areas (each data point 

represents an average of 28 devices for the respective areas of the device. 

 

The barrier heights for the EG/SiC Schottky junction were calculated using the 

leakage current densities of the diodes for different cooling rates (Figure 2.19) from 

thermionic emission equation given below: 

Schottky barrier height, Φ𝐵 =  
𝑘𝑇

𝑞
ln (

𝐽0

𝐴∗𝑇2)  (2.6) 

where, Richardson’s constant, A* = 143 A/cm2K2 for 4H-SiC, T= 300K, J0 = leakage 

current density (A/cm2) and 
𝑘𝑇

𝑞
 is the thermal voltage at 300K = 0.0259eV.  

Figure 2.18 shows the calculated barrier heights as a function of perimeter area ratio 

of the devices. From this figure, it is clear that the variation in barrier height ФB values for 

different P/A ratios is more in case of the EG/SiC devices corresponding to the fast cooling 

rate. The barrier heights for devices corresponding to medium and slow cooling rates, on 

the other hand, showed little variation with perimeter/area ratio, indicating that slower 

cooling rates indeed helped in minimizing the thermal stress at the EG/SiC interface, during 

the temperature down step in the last stage of the growth process. 
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Figure 2.19 Schottky barrier height (ФB) of EG/n-SiC Shottky junctions obtained for an 

average of 28 devices for different P/A of the devices (trend lines shown are guide to the 

eyes). 

 

2.5 SUMMARY 

The graphene growth methods mainly thermal sublimation growth and EG growth using 

selective etching of SiC using TFS are reviewed. It is confirmed from the XPS 

measurements that EG thicnkess increases linearly with time(1-1.5ML/minute) in the TFS 

growth method. The TFS accelerated growth of EG has significant advantage in terms of 

cycle time compared to thermal sublimation as higher EG growth rates are  observed using 

the TFS growth technique. The graphene layers grown using TFS showed better quality as 

indicated by low D/G peak ratio observed in the Raman spectral studies. Additionally, the 

barrier height of EG/n-SiC Schottky diode fabricated using TFS grown EG is significantly 

large compared to barrier heights of EG/n-SiC Schottky junction formed by thermal 

sublimation method (0.8eV for TFS growth vs 0.5eV for sublimation). Finally, the high 

quality EG layers grown using this controllable EG growth technique can be used in 

optoelectronic devices such as in photodetectors.  
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CHAPTER 3

EPITAXIAL GRAPHENE/4H-SIC HETEROJUNCTION BASED 

BIPOLAR PHOTOTRANSISTORS FOR UV DETECTION1,2,3 

3.1 INTRODUCTION 

UV photodetectors have a wide variety of applications in defense for plume detection, 

flame sensing, and also as biological and chemical sensors (M. Razeghi & Rogalski, 1996). 

Solid state UV detectors based on Si, SiC, GaN, AlGaN, InGaAs and GaAs are popular 

due to their reliability and light weight.  Although Si based UV detectors are popular for 

commercial applications, they are sensitive to visible light and therefore need to be used 

with optical filters that block the visible light. Therefore, UV photodetectors based on wide 

bandgap semiconductors like 4H-SiC (Eg=3.26Ev for 4H-SiC) are a better choice for 

visible-blind UV detection, and can be operated in high temperature and harsh environment 

conditions due to high radiation and chemical hardness. In the past, many research groups 

reported SiC UV detectors based on Schottky, MSM and p-i-n structures (E. Monroy, 

Omnès, & Calle, 2003), (Manijeh Razeghi, 2002). 

                                                           
1V. S. N. Chava, S. U. Omar, G. Brown, S. S. Shetu, J. Andrews, T.S.Sudarshan, MVS 

Chandrashekhar, Appl. Phys. Lett. 2016, 108 (4), 043502. Reprinted here with permission 

of publisher. 
2V. S. N. Chava, B. G. Barker, K. M. Daniels, A. B. Greytak, MVS Chandrashekhar, 

SENSORS, IEEE, 2016 (pp. 1-3). Reprinted here with permission of publisher. 
3Barker, B. G.; Chava, V. S. N.; Daniels, K. M.; Chandrashekhar, M. V. S.; Greytak, A. B. 

2D Mater. 2017, 5 (1). Reprinted here with permission of publisher. 
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Traditional UV detectors with metal contact electrodes, however, suffer from low 

UV responsivities(R), due to the reflection/absorption losses caused by the metal 

electrodes. Later, UV detectors with improved responsivities(R) are developed by using 

semi-transparent metal contacts (A. Sciuto et al., 2007), where the semi-transparent 

contacts can transmit more than 70% of the UV light incident on the device.  

Graphene forms a Schottky junction with semiconductors such as Si, GaAs, SiC 

etc. (Tongay et al., 2009). Further, Epitaxial graphene(EG)/SiC Schottky junction devices 

are of particular interest due to the advancement in the growth technology of both epitaxial 

graphene (Tawhid Rana et al., 2015) and 4H-SiC (Haizheng Song, Tawhid Rana, M.V.S. 

Chandrashekhar, Sabih U. Omar, 2013). Additionally, the EG grown on top of SiC, which 

is 2-3 atomic layers thick (absorption ~0.6%/monolayer on SiC, 1ML=0.34nm, (Dawlaty 

et al., 2008)), can be used as a transparent metal contact for SiC UV detectors, and therefore 

does not strongly absorb UV photons(𝜆:10nm-400nm) which would otherwise be absorbed 

in the surface layer of a pn junction, typically ~100nm thick. Moreover, as explained in 

chapter 2, graphene grown on p-SiC by thermal sublimation forms a Schottky junction with 

a large barrier height ~2.7eV (Coletti et al., 2013).  As Schottky devices are typically 

majority carrier devices they offer advantages like fast switching time due to fast 

recombination in the metal, and minimal series resistance in the emitter, as has been shown 

in bipolar mode Schottky devices (Y.Mizushima, 1984). Moreover, the large Schottky 

barrier height to p-SiC (which is ~2.7 eV) in our device would result in reduced reverse 

leakage current (Schoen, Woodall, Cooper, & Melloch, 1998), potentially breaking the 

tradeoffs in speed and leakage current between unipolar and bipolar devices in certain 
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applications. In this chapter, the performance characteristics of an EG/p-SiC/ n+-SiC 

vertical bipolar junction UV phototransistor are discussed. 

3.2 EG/SiC HETEROJUNCTION BIPOLAR PHOTOTRANSISTOR 

3.2.1 EXPERIMENTAL DETAILS 

As shown in Figure 3.1, a vertical bipolar transistor is fabricated with an EG emitter, p-SiC 

base, and n+ -SiC collector layers. Epitaxial growth of p-SiC on commercially available 40 

off-cut n+-SiC (0001) substrate is done in a CVD growth reactor by using Propane and 

Dichlorosilane(DCS) gas precursors. A high C/Si ratio of 1.2 is maintained in the source 

gas mixture during the CVD growth process. The pressure and temperature are maintained 

at 300 Torr and 16000 C respectively. The epi-layer is characterized by using mercury 

probe capacitance-voltage measurements and Fourier Transform Infrared 

Reflectance(FTIR) techniques for calculating the doping and thickness. The epi-layer 

thicknesses (i.e., the base width, WB) as measured by FTIR was ~30 μm (Macmillan, 

Henry, & Janzeni, 1998). The net carrier concentration(NA-ND) for the p-epilayer, as 

measured by mercury probe C-V method (Haizheng Song, Tawhid Rana, M.V.S. 

Chandrashekhar, Sabih U. Omar, 2013), is found to be 3x1014 cm-3. The epitaxial graphene 

(EG) was grown by thermal sublimation of the p-SiC epi-layer surface in vacuum at 13500 

C, and the growth process is described in greater detail in chapter 2. The presence of 

graphene was confirmed by the Raman spectra obtained using a Horiba JY spectrometer 

with an excitation line of 631 nm. The D/G ratio was estimated to be <0.06. The XPS 

measurements showed EG thicknesses of 2-3 monolayer in similar growth conditions (B. 

K. Daas et al., 2012). The 250 μm diameter circular graphene mesa structures were defined 
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using an O2 plasma reactive ion etching (RIE) through a photoresist mask. An RF-sputtered 

Ti(40nm)/Au(20nm) film was used to form a large area ohmic contact on the back of the 

SiC substrate. Note that the base p-SiC epilayer is not mesa isolated as it is difficult to etch 

large depths of SiC selectively using the RIE system. 

As show in Figure 3.1, the device has an EG/p-SiC Schottky junction at the top and 

p-SiC/n+-SiC p-n junction at the back. The reason why this device is called a bipolar 

junction transistor(BJT), however, will become clear later (see section 3.2.2) when the 

device current-voltage (Ic-VCE) characteristics under UV illumination are discussed. In 

general, a BJT is said to be operated in forward active mode, when the emitter-base(E-B) 

junction is forward biased and the base-collector(B-C) junction is reverse biased. Similarly, 

the present EG/SiC device acts as a BJT in forward active mode when the graphene/p-SiC 

(emitter-base) junction is forward biased and the p-SiC/n+-SiC (base-collector) junction is 

reverse biased under UV illumination. Here after, we call the forward active mode of 

operation as Schottky Emitter (SE) mode (Figure 3.2(b)), and the device in SE mode as 

Schottky Emitter phototransistor(SEPT). 

 
 

Figure 3.1 Schematic of EG/p-SiC/n+-SiC vertical bipolar UV phototransistor (SEPT) 

operated in Schottky Emitter(SE) mode. 
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For phototransistor operation, the graphene emitter was held at a negative bias with 

respect to the n+-SiC emitter layer by directly contacting the graphene layer with a tungsten 

probe, and this makes the EG/p-SiC Schottky junction forward biased (Figure 3.1). Here, 

the base (p-SiC) is floating and the base photocurrent was provided by optical excitation 

from an Omnicure S1000 Hg-vapor lamp with variable intensity as the illumination source 

in a microscope with 10x objective. The UV light intensity of this lamp is further attenuated 

by placing a SiC wafer at the inlet, along with an additional aperture to limit the spot size 

to <200 µm i.e., to confine it to the limits of the device. The lamp spectrum provided three 

excitation lines at 312nm, 334nm and dominant 365nm wavelengths which are above the 

bandgap for SiC. The UV power incident on the device is varied by changing the intensity 

of the output power of the Hg-vapor lamp. The optical power incident on the device under 

study was measured using a calibrated Si photodiode sensor PM100D from Thorlabs. 

3.2.2 RESULTS AND DISCUSSION 

Figure 3.2(a) shows the typical collector current (Ic) vs collector-emitter voltage (VCE) 

characteristics for the EG/p-SiC/n+-SiC SEPT measured at different UV illumination 

powers. Figure 3.2(b) shows the photocurrent (Ic)ph vs bias voltage(VCE), where (Ic)ph is 

obtained by subtracting the dark current from the collector current at each UV power.  In 

our present study, the UV illumination is varied from 0.43 µW to 7.87 µW, corresponding 

to the measured short circuit current (IC at VCE=0V) values 43.5 pA to 50.4 pA. The 

relatively large dark current is attributed to the lack of mesa isolation between the p-SiC 

base and n+-SiC collector, as it is difficult to etch large depths of SiC selectively, 30 µm in 

this situation ensures adequate absorption of the 365 nm UV light. Also, it is clear, from 

Figure 3.2(b), that the collector photocurrent (Ic)ph increases with the UV light power. 
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Figure 3.2 (a) Current-voltage characteristics and (b) photocurrent-voltage characteristics 

of a typical EG/ p- SiC/n+- SiC SEPT under various UV light illumination levels. (Inset in 

Figure 3.2(a) shows full range of measured current-voltage (Ic vs VCE) characteristics). 

 

Now let us consider the carrier transport in the device, under an applied bias voltage 

(VCE), in dark and also under illumination. As shown in Figure 3.2(a), in dark condition, 

the collector current(IC) increases with an increase in the emitter-collector bias voltage 

(VCE). This increase in IC with applied VCE can be explained by considering the EG/p-SiC 

Schottky junction. When the applied VCE increases, the forward bias voltage at EG/p-SiC 

Schottky junction also increases. As a result, the barrier at the EG/p-SiC gets lowered with 

an increase in forward bias voltage at this junction, and in this situation a number of holes 

that can overcome the Schottky barrier to reach the EG emitter region is more compared to 

the number of holes that can overcome the barrier in equilibrium condition (see Figure 3.3). 

This increase in hole injection is clearly visible in Figure 3.3(a), where IC increases at VCE 

~2.7V, which is the Schottky barrier height for holes in p-SiC. Figure 3.3 shows the energy 

band diagram of the device in equilibrium (Figure 3.3(a)) and under illumination (Figure 

3.3(b)). 
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Figure 3.3 Energy band diagram of the EG/p-SiC/n+-SiC Schottky emitter bipolar 

phototransistor (SEPT) (a) in equilibrium (b) under UV illumination and applied bias 

(VCE). 

 

Also, from Figure 3.2(b), it is clear that the collector photocurrent (Ic)ph increases 

with the UV light power. Now, when the device is illuminated with a UV lamp, the incident 

UV light is transmitted through the highly transparent EG at the top (see the band diagram 

in Figure 3.3(b)), and gets absorbed in the base (p-SiC epilayer) and collector (n+-SiC 

substrate) layers. Therefore, electron-hole (e-h) pairs are generated in the SiC base and 

collector layers as a result of UV photon absorption. Further, due to the applied reverse 

bias voltage (VCE) at the p-SiC/n+-SiC (base-collector) junction, the optically generated 

holes are swept into the base(p-SiC) region and electrons are swept into the collector (n+-

SiC substrate) region. In this case, the photogenerated carriers (both electrons and holes) 

within a diffusion length distance from the B-C depletion region edges are swept by the 

electric field at this junction. These holes in the base region, however, see a large potential 

barrier (~2.7eV) near the EG/p-SiC interface and therefore contributes to very little (Ic)ph. 

These holes also contribute to the base current and therefore, the base current in the device 

is varied by changing the UV illumination power. This variation in collector current with 
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incident UV power (or base photocurrent) is similar to variation in the collector current 

with injected base current observed in a conventional npn transistor. 

In this SEPT, the optically generated carriers are multiplied by the transistor 

common emitter gain and thus enhances the collector current depending on how this gain 

changes. Optical gain (hFE) (Sze & Ng, 2006) is given by: 

ℎ𝐹𝐸 =
(𝐼𝐶)

𝑝ℎ

Ib
     (Eq.3.1) 

where (Ic)ph is the measured collector current after subtracting the dark current and Ib is the 

base current. The subtraction of unity in Equation 3.2 accounts for the photogenerated 

current, which should not be double counted. In a conventional BJT, the gain (or collector 

current) is controlled by varying the current injected into the base terminal. As already 

mentioned the present device is open base phototransistor and therefore the base current is 

varied by varying the UV illumination power. Therefore, the collector current is controlled 

by the UV illumination power (or base current) which is clearly seen in Figure 3.3(b). The 

base photocurrent (Ib or Iph) (Sze & Ng, 2006), generated by the absorption of incident UV 

photons in the base region, is calculated by: 

 𝐼𝑏 = 𝐼𝑃ℎ = 𝑃𝑂𝑝𝑡
1−exp (−𝛼𝑎𝑏𝑠𝑊𝑏)

𝐸𝑃ℎ
   (Eq. 3.2) 

Here Popt is the incident UV power, Wb is the neutral base width, αabs is the absorption 

coefficient, approximately ~80cm-1 (Sridhara, Devaty, & Choyke, 1998) for 365nm 

wavelength photons in 4H-SiC, Eph is the energy of UV photons corresponding to 365nm. 

We assumed the reflectance of our device is the same as that of the Si photodiode, therefore 

the measured Popt by Si photodiode represents the number of UV photons passing through 
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the device. All calculations are done by assuming the UV light as a monochromatic UV 

radiation since the 365nm line is dominant in the UV lamp spectrum. 

Figure 3.4 shows the variation in current gain calculated using Equation 3.1 and 

Equation 3.2, with UV power at VCE=60V. A maximum current gain of 113 is estimated 

when the illumination level is set to be 0.43 µW.  The current gain values decreased steadily 

by increasing the incident UV power. 

 
 

Figure 3.4 Variation of current gain (hFE) of SEPT with incident UV illumination power at 

VCE=60 V. 

 

Here after, we explain the transistor action in the present SEPT device as an 

equivalent of conventional npn transistor. Using the npn transistor analogy, the hole 

injection across the EG/p-SiC Schottky junction is considered in the following discussion 

to be equivalent to electron injection from the n-emitter in an npn transistor. In reality, the 

carrier transport at EG/p-SiC occurs only by thermionic emission of majority carrier holes 

from p-SiC into EG. Remember, there is a barrier of 0.5eV for electrons in EG where the 

fermi-level is pinned to the conduction band edge of p-SiC (Figure 3.3) and this barrier 

will not change, similar to the fixed barrier height for carriers in the metal side in case of a 
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Schottky diode devices, with the applied bias voltage(VCE). Thus, as the photo current (Ic)ph 

increases, the total number of injected electrons and holes in the base also increase, leading 

to faster recombination of carriers in the base, which is proportional to the np product (Sze 

& Ng, 2006). This suggests that base recombination is the limiting mechanism of the gain 

in this device, similar to that observed in GaN heterojunction bipolar devices (Yang, 

Nohava, Krishnankutty, Torreano, Mcpherson, et al., 1998). The device characteristics of 

other devices fabricated on the same substrate with same dimensions also found to show 

similar I-V characteristics and the gain values are also in the same range. 

Further below, we exclude the possibility of gain from avalanche processes, as well 

as persistent photoconductivity, only leaving bipolar gain as a possibility. In general, the 

gain in photodetector can occur by any of three mechanisms namely i) photoconductive 

(Yang, Nohava, Krishnankutty, Torreano, Mcpherson, et al., 1998), ii) avalanche (Joe.C. 

Campbell, Dentai, Qua, & Ferguson, 1983) and iii) bipolar gain (Kunihiro Suzuki, 1991) 

depending on the device structure and applied bias. Below, it is confirmed that the current 

gain is due to bipolar gain (transistor action) alone by excluding the possibility of 

photoconductive and avalanche gain.  

The transit time(τtransit) of electrons at low injection in the base region by using the 

diffusion equation (Kunihiro Suzuki, 1991): 

𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡 =
𝑊𝐵

 2

2𝐷𝑛
     (Eq.3.3) 

At VCE=60V, the transit time (τtransit) is estimated to be 180ns, using the above Equation 

3.3. Also, the lower bound for the recombination time, τrecombination, of electrons diffusing 

from base to collector is estimated by assuming the recombination velocity of electrons at 
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the p-SiC/n+-SiC BC junction terminal as >105cm/s as measured by Kimoto (Kimoto, 

Hiyoshi, Hayashi, & Suda, 2010), and τrecombination value is estimated to be <30ns for a 30µm 

base. Therefore, since τrecombination< τtransit, the carrier recombines as soon as it makes one 

pass through the long 30µm base. Thus, we can exclude the possibility of photoconductive 

gain here. 

In avalanche photodetectors, the photocurrent and dark current are increased by a 

multiplication factor M (Joe.C. Campbell et al., 1983) given by the equation: 

𝑀 =
1

1−(
𝑉𝐶𝐵
𝑉𝐵

)
𝑛     (Eq.3.4) 

Here, VCB is the collector-base voltage, VB is the breakdown voltage of the B-C junction 

and n is an empirical factor that depends on semiconductor type, doping and wavelength. 

For 4H-SiC, VB is calculated (Baliga, 2008) using:  

𝑉𝐵 = 3 𝑋 1015𝑋(𝑁𝐷)−3/4    (Eq.3.5) 

The breakdown voltage (VB) for the p-SiC/n+-SiC (B-C) junction is estimated to be ~104 

V corresponding to a doping ND=3x1014 cm-3 in the p-SiC base. A multiplication factor of 

M=1 is estimated by using Equation 3.5. Since here VCB<<VB, we do not expect avalanche 

breakdown at the p-SiC/n+-SiC (B-C) junction in our device. Typically, in devices that 

show avalanche breakdown, the current increases sharply (by few orders) for a small 

change in applied bias voltage near the breakdown. From the Ic vs VCE (as shown in Figure. 

3.2), no such sharp increase in the collector current is observed with the applied bias 

voltage (VCE), and therefore the possibility of the avalanche gain is excluded in these device 

structures. 
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The analysis below is for an npn transistor whose action is similar to the SEPT 

device considered in our present study. From the measured collector current, the peak value 

of electron concentration at the edge of base-collector depletion region (see Figure 3.3(b)) 

is estimated to be 5x1013cm-3 (from eq. 3.6) by assuming that the concentration of electrons 

at the back edge of the collector is zero (recombination velocity >105cm/s at the back 

interface (Kimoto et al., 2010). For the estimation of the electron concentration in the base-

collector depletion region edges (no recombination in the depletion region), we used Fick’s 

law of diffusion in the neutral base region: 

𝑞𝐷𝑛
𝑑𝑛

𝑑𝑥
=  In        (Eq.3.6) 

Here Dn is the diffusion coefficient of electrons and q is the charge of the electron known. 

Since epi layer (base) doping is 3x1014 cm-3>5x1013 cm-3, indicating low injection level.  

This low injection level is valid for the highest collector current obtained for 7.87µW 

illumination at 60V. Hence even at the maximum UV power illumination used in this study, 

we have low-level injection condition. 

The responsivity(R) of the SEPT device at 365nm at zero bias voltage(VCE=0V), 

calculated as the ratio of (Ic)ph and incident UV power, is 0.25 mA/W for 0.43 µW UV 

illumination. The responsivity(R) is increased with an increase in the bias voltage (VCE) 

and reached a maximum value of 7.1 A/W at VCE=60V. It should be noted that the UV 

responsivity(R365nm) of the present device is better than the recently reported EG/SiC UV 

detector (Anderson et al., 2015) and graphene/SiC MSM photodetector (Kusdemir et al., 

2015) which showed a maximum responsivity of 0.2 A/W at 310 nm and 2 mA/W at 365 

nm in the respective order. Further, similar to the current gain, the responsivity(R365nm) at 
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VCE=60V also decreased with an increase in the incident UV power and therefore can be 

attributed to the recombination in the base region as discussed previously for the case of 

current gain. 

Table 3.1 Comparison of near UV(365nm) responsivities of SEPT with previously reported 

UV detectors. 

 

S. No. UV detector type R at 365nm (in A/W) 

1 EG/SiC SEPT (this work) 7.1 

2 EG/SiC PN diode 0.2 at 310nm 

3 EG/SiC MSM* 2x10-3 

4 4H-SiC PiN diode 1x10-3 

5 4H-SiC APD** 1x10-2 

6 GaN PiN diode 1.5x10-3 

7 GaN PN diode 0.1 

 

*MSM: Metal- Semiconductor-Metal, **APD-Avalanche Photodiode 

References cited here in Table 3.1: 

2- (Anderson et al., 2015), 3- (Kusdemir et al., 2015), 4-(X. Chen, Zhu, Cai, & Wu, 2007), 

5- (Zhu, Chen, Cai, & Wu, 2009), 6- (Zhu et al., 2009), 7- (Eva Monroy et al., 1998) 

 

Table 3.1, shows a comparison of ultraviolet responsivities of SEPT with previous 

works. From this table, it is clear that SEPT shows better responsivity compared to other 

devices in the near UV regime. 
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3.3 HYDROGEN INTERCALATION STUDY 

3.3.1 INTRODUCTION 

In section 3.2, it is demonstrated that vertical EG/p-SiC/n+-SiC devices, when operated in 

Schottky emitter mode, show high current gain (113) and high responsivity (7.1 A/W) 

under 365 nm UV illumination. Further, the high gain and responsivity in these device 

structures is attributed to minority carrier (electron) injection from EG into p-SiC. 

As discussed in chapter 2, when Epitaxial graphene (EG) layer is grown on SiC 

(0001), there is a carbon (buffer) layer formed at the interface of EG/SiC junction, and also 

the fermi level of EG is pinned to SiC conduction band due to dangling bonds presented at 

the EG/SiC interface (fig. 2.8). Further, the fermi-level of EG is located at 0.3 eV above 

the Dirac point(ED) (Coletti et al., 2013). On the other hand, the EG fermi level can be 

unpinned by passivating the dangling bonds, present at the buffer layer (also called “zero-

layer” graphene) and p-SiC interface, by hydrogen intercalation process (Riedl et al., 

2009). Further, as a result of H-intercalation process, the fermi-level of epitaxial graphene 

shifts below the Dirac point by 0.5 eV (ED) (Coletti et al., 2013). Therefore, it is of interest 

to understand how the fermi-level shift influences the carrier injection efficiency, and thus 

gain of the present EG/SiC SEPT device. In this section, the effect of hydrogen 

intercalation process on the I-V and gain characteristics of the SEPT devices are discussed 

(Chava, Chandrashekhar, Daniels, Barker, & Greytak, 2016). 

3.3.2 EXPERIMENTAL DETAILS 

The sample consisting of EG/p-SiC/n+-SiC vertical BJT devices is placed in an Aixtron 

horizontal hot-wall reactor where the sample was ramped to 1400°C, in 60 slm of Ar flow 
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at 200 mbar to prevent additional growth of EG and promote the desorption of water and 

other molecules possibly on the EG surface after being exposed to air. The sample was 

then cooled to 1050°C prior to introducing H2 into the reaction chamber. For the H-

intercalation step, the H2 gas flow is fixed at 80 slm while maintaining a pressure of 

900 mbar for 60 minutes (Coletti et al., 2013). This process results in hydrogen passivation 

of the Si dangling bonds present at the top of the p-SiC(0001) epilayer, eliminating the 

covalent bonding between the epilayer and the first carbon layer, 6√3 buffer layer, which 

now becomes quasi-freestanding EG forming an additional monolayer of EG. The 

polarization field from the hexagonal epilayer gives rise to a p-type charge density of 

~1×1013 cm−2 in the quasi-freestanding EG, from ~5x1012cm−2 n-type observed prior to 

intercalation (Riedl et al., 2009). 

3.3.3 RESULTS AND DISCUSSION 

It is previously reported (Coletti et al., 2013) that the hydrogen intercalation process 

converts buffer layer present at the EG and SiC interface into an additional graphene layer. 

The conversion of buffer layer into an additional graphene is confirmed by studying the 

2D peaks widths of epitaxial graphene (EG) characterized using Raman spectroscopy, as 

shown below in Fig.3.5. As shown in fig 3.5(a), the Raman map of EG in the EG/SiC 

device before H-intercalation indicates the presence of 2-3 ML graphene (see side color 

scale in fig. 3.5(a)). The Raman map of the same EG layer after intercalation (fig. 3.5(b)) 

indicates the presence of a 3-4 monolayer graphene. The presence of an additional 

graphene layer in H-intercalated graphene is due to conversion of interface buffer layer 

into a free-standing graphene layer. 



www.manaraa.com

67 

 

 

Figure 3.5 Measured 2D peak width of epitaxial graphene (EG) using Raman spectral 

measurements (a) before and (b) after H-intercalation. (See the side color scales for the 

thickness corresponding to each map). 

 

 

Figure 3.6 (a) Current(IC)-Voltage (VCE) characteristics of the device after intercalation 

under UV light (365 nm) (Also shown is the laser power in mW) (b) Comparison of 

estimated gain vs UV power before and after hydrogen intercalation. 

 

The I-V characteristics of the H-intercalated EG/SiC device are recorded, by using 

the S1000 UV lamp, for different UV powers as described in section 3.2.2. Figure 3.6(a), 

shows the IC-VCE characteristics of the device measured after H-intercalation. From these 

IC-VCE curves, it is clear that after H- intercalation also, the collector current has increased 

with collector-emitter bias voltage (VCE). The corresponding photocurrent gain values are 
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estimated, as the ratio of collector photocurrent to base current (see Equation 3.1), as 

explained in the previous section 3.2.2. The variation in estimated photocurrent gain with 

incident UV power is plotted is shown in Figure 3.6(b), for comparing the current gain 

before and after H-intercalation. As shown, for H-intercalated device, the estimated gain is 

decreased with increase in the incident UV power, which is consistent with the gain trend 

observed before H-intercalation. However, the gain at each UV power has decreased after 

H-intercalation. Since the gain in the SEPT is a consequence of minority carrier injection, 

this reduction in gain for H-intercalated devices can be attributed to reduced minority 

injection efficiency at the EG/SiC junction. This can be explained by considering the fermi-

level shift due to H-intercalation step. As mentioned before, Fermi-level(EF) in EG shifts 

below the Dirac point(ED) due to hydrogen intercalation and thus lowering the barrier for 

holes that are being injected into the EG emitter region, thereby reducing the injection 

efficiency (see eq. below) and hence gain of the device. 

𝛾 =
𝐽min

𝐽min+𝐽maj 
     (Eq.3.7) 

3.4 PHOTORESPONSE MEASUREMENTS UNDER VISIBLE 

LIGHT(444NM) ILLUMINATION AND SPCM STUDY 

In addition to the UV responsivity at 365nm (R365nm) as discussed in section 3.2, another 

important metric for the comparison of UV detectors performance is the UV-Visible 

rejection ratio. The UV-Visible rejection ratio(RUV:RVis) is defined as the ratio of estimated 

responsivities under UV and visible light illuminations. In this section, the device 

characteristics under visible light (444nm here) are measured, and then compared with the 

characteristics under 365nm for estimating the UV-Visible rejection ratio. 
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 For this purpose, the I-V characteristics of SEPT devices are measured by using a 

sub-bandgap visible light(444nm) source. Additionally, Scanning Photocurrent 

Microscopy (SPCM) with sub-bandgap excitation (444 nm) is used to map the spatial 

extent of the photocurrent response and examine the influence of localized polytypes on 

the sensitivity to sub-bandgap light. In this SPCM measurement technique, the local 

excitation spot is raster-scanned to identify spatial variations in photocurrents, which can 

be used to identify localized defects and examine characteristic length scales for carrier 

transport devices (Mueller, Xia, Freitag, Tsang, & Avouris, 2009). The spatial resolution 

of SPCM allows for clear representation of polytype heterojunctions, should they exist, 

and allows for us to discriminate between localized and homogenous origins of sub- 

bandgap response. By choosing to illuminate at 444 nm, we can resolve SiC polytypes that 

 

 

 

Figure 3.7 Schematic of SPCM setup for analysis of EG/SiC SEPT device. Voltage is 

applied through a tungsten probe arm contacted to the graphene surface. A pre-amplifier 

and lock-in amplifier are used to isolate the photocurrent signal at the frequency of the 

chopped laser light. The reflected laser signal is also captured and is used to map the 

physical features of the device. 
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exist in the visible absorption range, such as 8H-SiC (Eg=2.86eV). 

The schematic of the measurement setup is shown in Figure 3.7. To form the SPCM 

images, a mechanically chopped, focused laser spot is scanned over the sample. Dual lock-

in amplifiers allow for simultaneous recording and mapping of the resulting photocurrent 

and the specularly reflected laser beam, enabling good registry of SPCM maps with 

structural features. The photocurrent measured through the lock-in amplifier represents 

only the photocurrent that occurs at the same frequency as the scanned laser beam.  

First, the measurement IC-VCE characteristics of the device are measured in SE 

mode (or graphene emitter), by focusing a visible blue laser (444nm)  on to a fixed 

location(spot IC-VCE) in the graphene mesa region. The laser power is varied between 

0.38mW and 3.8mW. The corresponding I-V test results are shown in Figure 3.8. As can 

be seen in Figure 3.8, there exists a non-zero photocurrent in addition to the dark current, 

due to blue photon absorption, in this device SE mode. Also, the photocurrent due to blue 

light is increased with an increase in laser power, indicating the device behavior is similar 

to that when illuminated by 365nm ultraviolet light. 

Also, the UV-Visible rejection ratio, which is calculated as the ratio of responsivity 

of the device under UV light to the responsivity of the device under blue light, is estimated 

to be about 4.5x103 at VCE=60V. This high UV-Visible rejection is comparable to the 

previously reported values and thus demonstrates these device structures could be a 

potential alternative to conventional metal electrode based SiC UV-detectors. 
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Figure 3.8 Current(IC)-Voltage (VCE) characteristics of SEPT under blue laser light (444 

nm) illumination. The incident laser powers are also indicated. 

 

There are several possible origins of sub-bandgap response, including 

heteropolytype junctions, donor-acceptor pair (DAP) absorption, and internal 

photoemission. The Franz-Keldysh effect can lead to sub-bandgap absorption but is not 

expected to play a large role here due to the modest electric field and indirect bandgap. SiC 

exists in several polytypes with varying band gaps. In this particular device, 4H-SiC (3.23 

eV) is used to absorb UV light. Stacking faults in SiC manifest as other polytypes with 

smaller bandgaps, specifically 3C- (2.40 eV), 6H- (3.0 eV), or 8H-SiC (2.86 eV) (Mueller 

et al., 2009) which could lead to a spatially dependent visible response within the device 

area. A more homogenous contribution to sub-bandgap photocurrent is expected within the 

area of the EG contact from the other effects mentioned. Due to the large dopant ionization 

energies in SiC, DAP states have been shown to lead to luminescence and 

photoconductivity in the visible region (Mueller et al., 2009), (Mueller et al., 2009). 
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Thermal equilibrium between DAPs and band-edge states could give rise to carriers with a 

sufficient effective mobility to explain the transistor action.  

 

 
 

Figure 3.9 Band structure of the device in graphene emitter(SE) mode showing visible 

(dotted blue arrows) and UV (solid violet arrow) absorption mechanisms. Donor-acceptor 

pairs (DAP) create sub-bandgap states (dotted black lines) that also absorb visible light. 

Visible light can also be absorbed by stacking faults (SF) that shrink the bandgap, allowing 

longer wavelengths of light to be absorbed. UV absorption can also occur at SFs or DAP 

states, alongside bandgap absorption. 

 

The homogeneous response under 444nm illumination, also described later by 

using SPCM maps, is attributed to absorption by DAP as shown in the band diagram below. 

In addition to the estimation of responsivity from spot I-V measurements under 444nm, 

photocurrent maps of the devices are recorded by raster scanning the laser beam, as 

described previously, across the selected area of the chip. Figures 3.10 and 3.11 show the 

SPCM image, as well as spot current-voltage (I-VCE) curves, recorded for the same EG/SiC 

BJT device discussed in section 3.2.2, under 444 nm excitation. In this particular device 

(another 250µm diameter EG device on the same chip), the circular EG electrode has been 
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scribed to form two separate semi-circular devices, as can be seen in the specular reflection 

map (Figure 3.10(a)). The SEPT devices generally display a large dark current at positive 

VCE (graphene emitter mode), likely because the SiC p-n junction, which is at reverse bias  

 

 

Figure 3.10 Simultaneously recorded reflected light(a) and AC photocurrent(b) maps of 

the EG/SiC phototransistor device in graphene collector (SC) mode under 444nm (sub-

bandgap) excitation (VCE=−10V, 2.24mW, chopped at 284Hz). The circular graphene 

electrode has been scribed to form two separate devices; photocurrent is only detected from 

the device contacted by the tungsten probe arm (dark shape at the top of images). Scale 

bars, 50μm. Signal profiles of the reflected light(c) and photocurrent(d) images along the 

lines indicated in (a,b). Signals are averaged in the orthogonal direction within the width 

indicated by the red boxes. Blue trace in d shows the near-exponential decay of the falling 

edge signal in the photocurrent profile. 

 

in this condition, is poorly rectifying because it is not mesa isolated. In contrast, very little 

dark current (≪ 1 nA) is observed at VCE < 0 (graphene collector mode), suggesting a high 

degree of rectification at the EG/p-SiC Schottky junction. 

Figure 3.11 shows the band diagrams for the device operation in EG emitter(a) and 

EG Collector(b) modes. Notably, a non-zero photocurrent is detected under 444 nm 
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illumination in both modes (Figures 3.10(c) and 3.10(d)), indicating that 444nm radiation 

is capable of exciting a base current. However, the maximum responsivity under 444nm is 

much smaller, by a factor of ~103, compared to maximum responsivity estimated under 

UV illumination previously (section 3.2.2). The photocurrent in graphene emitter mode is 

more than 100 times larger than for graphene collector, a contrast that is also observed 

under UV illumination of this and similar devices, suggesting a common carrier transport 

process for photocurrent appearing under visible and UV excitation.  

 

 

 

Figure 3.11 (a) Band diagram for EG/SiC phototransistor device operation in graphene 

emitter mode (VCE>0). Electron-hole pairs are generated by light absorption. (b) Band 

diagram for EG/SiC phototransistor device operation in graphene collector mode (VCE<0). 

Ic-VCE characteristics of the device shown in Figure 3.10, measured in graphene emitter or 

SE(c), and graphene collector or SC(d) modes. 
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Figure 3.10(b) shows a representative SPCM map of this device recorded at VCE = −10V 

(graphene collector). The response is clearly seen to be strongly localized to the graphene 

electrode that is directly contacted by the probe arm. The fact that photocurrent is only 

collected from one of two devices in close proximity confirms the role of EG as a 

transparent and conductive emitter (or collector) contact in the device architecture. The 

high in-plane conductivity of the EG layer is illustrated by a flat response within the 

contiguous region. A similar pattern is observed in graphene emitter mode; however, the 

very low dark current and low gain in graphene collector mode results in detailed functional 

SPCM images. The edge of the EG region results in a sharp cutoff in the reflected signal 

of the device as seen in the profile plotted in Figure 3.10(c). In contrast, the edge of the 

corresponding photocurrent signal (Figure 3.10(d)) shows a measurable roll-off with 

distance with an approximately exponential profile. The logarithmic slope suggests a decay 

constant of about 10 µm. 

In graphene-collector (SC) mode, a much smaller photocurrent is detected than for 

graphene-emitter, both under UV excitation and at 444 nm. Notably, the photocurrent 

signal profile (Figure 3.10(d)) shows that photocurrent generation is localized to the portion 

of the device connected to the probe arm, confirming the role of the EG/p-SiC junction in 

the function of the SEPT device. However, the large difference in responsivity between 

graphene collector and graphene emitter modes suggests that carrier transport may be 

strongly limited by recombination at the EG/p-SiC interface. In a bipolar phototransistor, 

the majority of base current generation occurs at the base-collector interface, as this region 

is depleted and possesses the largest electric field. Consequently, surface recombination is 

expected to much more strongly influence the gain in graphene-collector mode. Surface 
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recombination will also tend to limit lateral transport of electrons in the base over distances 

larger than the depletion width WD (in graphene-collector mode) or base width WB (in 

graphene-emitter mode). Consistent with this picture, the photocurrent response is more 

strongly localized in graphene-collector than in graphene-emitter mode.  

Figure 3.12 shows the SPCM image of a different devices from the same chip. As 

shown here, in addition to the uniform blue response as seen in the other device, an 

additional AC photocurrent response localized in a triangular shape is observed both in SE 

and SC modes. However, there is no such feature observed in the reflected light image for 

this device. It is important to note that this localized response is not significantly high when 

 

 
 

Figure 3.12 AC photocurrent map of a different device on the same chip, measured in SC 

mode, showing an enhanced blue response locally in addition to the absorption due to DAP 

observed across the scanned region. 

 

compared to visible light response, resulting in high visible-rejection ratio. Further, the 

localized nature of the feature and the flat background makes it look prominent in the 

SPCM map. A triangular feature like stacking fault(SF)s are generally formed when a BPD 

propagates from the substrate into the epilayer during the growth. In general, BPDs can 
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nucleate as either 3C-SiC (Eg=2.36eV) or 8H-SiC(Eg=2.86eV) polytypes during the 

epitaxial growth process. 

Since a blue laser light(444nm) is used here in this study, the local feature observed 

in photo-response map could be attributed to absorption by 8H-SiC stacking fault. Also, 

the stacking fault feature is elongated in the down-step direction supporting our assumption 

that this is a stacking fault. Finally, the stacking fault feature length(L) is calculated as the 

projection of epi-layer onto the surface, using the equation below (Kimoto & Cooper, 

2014): 

𝐿 ≈
𝑑𝑒𝑝𝑖

𝑡𝑎𝑛 𝜃
      (Eq.3.8) 

,where, depi is the thickness of the epilayer which is 30µm, and θ is the substrate off-cut 

angle which is 4 degree. The stacking fault length obtained using these values is 400µm 

which agrees well with the length observed in the SPCM map confirming the presence of 

8H-SiC stacking fault in the epi-layer. Therefore, the enhanced blue photo-response is 

attributed to 8H-SiC stacking fault present in the active area of the device. This sub-

bandgap absorption due to SF is also shown in the band-diagram in Figure 3.9. 

3.5 SUMMARY 

In summary, vertical heterojunction bipolar phototransistors are fabricated with EG/ p- 

SiC/ n+-SiC as emitter, base and collector layers in the respective order. The current-

voltage characteristics of this device is tested under UV light for its application in UV 

detectors.  From these I-V characteristics, gain values are estimated for different UV 

illumination powers at 365nm. The highest gain value is found to be 113 and also 

responsivity values as high as 7.1 A/W are observed under 0.43 µW illumination at VCE=60 
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V bias voltage. We argue that the gain in this bipolar phototransistor device is a result of a 

two carrier transport across the EG/SiC junction, contrary to the general assumption that 

as a Schottky junction, it is expected to show thermionic emission due to majority carriers. 

Later the graphene/SiC interface is intercalated using H2 gas and characterized to study the 

effect of H-intercalation on the device behavior. It is confirmed from the I-v test results, 

the gain and hence responsivity of the H-intercalated devices are less compared to the 

device with as grown graphene. This reduction in gain (or responsivity) is attributed to 

reduction in minority carrier injection efficiency caused by barrier height increase due to 

fermi-level shift in EG after H-intercalation. A UV-Visible rejection ratio>103 is estimated 

for these devices by studying the device IC-VCE characteristics under blue laser light 

illumination. Sub bandgap response is confirmed by SPCM maps and is attributed to blue 

photon absorption by DAP present in 4H-SiC. 

Since the EG/SiC UV detector operates as a bipolar phototransistor, high gain 

values can be achieved even at low bias values by optimizing the epi-layer thickness and 

doping. The thinner SiC epilayer (base) in this device structure will lead to enhanced base 

transport factor and gain. Also, the dark current can also be reduced significantly by mesa 

isolating the base. 
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CHAPTER 4

HIGH DETECTIVITY VISIBLE-BLIND TETRAFLUOROSILANE (SIF4) 

GROWN EPITAXIAL GRAPHENE/SIC SCHOTTKY CONTACT 

BIPOLAR PHOTOTRANSISTOR1 

4.1 INTRODUCTION 

In chapter 3, high responsivity UV detectors based on EG/SiC bipolar junction transistors 

were demonstrated by using transparent EG window at the top to minimize the 

reflection/absorption losses caused by metal electrodes in conventional UV detectors. This 

device, in Schottky Emitter(SE) mode of operation, showed a high 

responsivity(R)=7.1A/W at 365nm due to EG/p-SiC Schottky injection leading to high 

bipolar gain. However, this device suffered from large dark current due to lack of mesa 

isolation at the p-SiC/n+-SiC (base/collector) junction. Moreover, this device did not show 

appreciable gain in the Schottky collector (SC) mode (Barker, Chava, Daniels, 

Chandrashekhar, & Greytak, 2017). The large dark current in these devices will result in 

high noise equivalent power (NEP) and low detectivity etc., and therefore are impractical 

for post-Si UV detection applications. 

                                                           
1Venkata. S. N. Chava, B. G. Barker; A. Balachandran, A. Khan, G. Simin, A. B. Greytak, 

MVS Chandrashekhar, Appl. Phys. Lett. 2017, 111 (24), 243504. Reprinted here with 

permission of publisher. 
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In this chapter 4, a new device with a vertical device (EG/p-SiC/n+-SiC) structure, 

similar to the BJT structure discussed in chapter 3, is used to study its UV detection 

characteristics.  A thinner p-SiC base (13μm) epilayer is used in these new BJT devices to 

improve the base transport factor and thus current gain. Remember in EG/SiC BJT, as 

discussed in chapter 3, the bipolar gain is a consequence of equivalence of electron 

injection from EG into p-SiC base layer in forward active mode of operation (Chava, Omar, 

et al., 2016).  Additionally, EG is grown using a new SiC homoepitaxy-compatible (Tawhid 

Rana et al., 2015) SiF4 gas precursor. In this growth technique, as discussed in chapter 2, 

graphene layers can be grown on SiC in a controlled manner. As described in chapter 1, 

the UV responsivity(R), UV-Visible rejection ratio, speed, NEP and specific 

detectivity(D*) are the important figures of merit for UV photodetectors. In this chapter, 

comprehensive characterization of this new TFS grown EG/SiC phototransistor including 

spectral responsivity, speed, noise equivalent power (NEP) and detectivity will be 

discussed, and these performance metrics are compared with other visible-blind UV 

detector devices reported in the literature. 

4.2 DEVICE FABRICATION AND CHARACTERIZATION 

For the phototransistor device fabrication, the 13µm thick p-SiC base epilayer is grown on 

8° offcut n+-4H-SiC (0001) substrate by CVD reactor using dichlorosilane(DCS) and 

propane in hydrogen ambient at 300 Torr and 16000C at a C/Si ratio of 1.9 (Song, 

Chandrashekhar, & Sudarshan, 2014), giving a growth rate of ~26 µm/hr for 30 mins, 

producing a 13 µm thick film as determined by Fourier transform infrared reflectance 

(FTIR). The resultant doping of the epilayer, due to site-competition epitaxy(Larkin et al., 

1994), was found to be p-type 3.7×1014 cm−3 by Hg-probe capacitance-voltage (C-V) 
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measurement. This thickness was based on our previous work (Chava, Omar, et al., 2016), 

where ~10μm diffusion length was measured in the 30μm base(Barker et al., 2017). Thus 

to improve the base transport factor, and hence, the current gain, a thinner layer was used, 

although this always comes at the expense of lower light absorption for long wavelengths 

(~30μm for λ=365nm, as in (Chava, Omar, et al., 2016),,(Barker et al., 2017). To achieve 

reasonable absorption in the range 250-400nm (Sridhara, Eperjesi, Devaty, & Choyke, 

1999), while maintaining adequate current gain, the 10μm base thickness range was 

chosen, with the resultant 13μm obtained for our standard 30min growth. 

The EG top electrode layer is then grown on the SiC base at 16000C and 300 Torr, 

in the same reactor, using SiF4 precursor in Argon for 10 minutes using a chemically 

accelerated Si-removal process developed at our lab(Tawhid Rana et al., 2015). From FTIR 

and X-ray photoelectron spectroscopy (B. K. Daas, Daniels, Sudarshan, & 

Chandrashekhar, 2011), the thickness of the EG is estimated to be ≈ 15 monolayers for 

these growth conditions. Circular graphene regions of diameter 250 µm are defined for the 

device, using photolithography followed by O2 plasma reactive-ion etching (RIE). 

Figure 4.1 shows the schematic and band diagrams of the vertical bipolar 

phototransistor device using EG/p-SiC/n+-SiC layers. As shown in this figure 4.1, the 

device is operated in two different modes, namely Schottky emitter (SE) and Schottky 

collector (SC) based on the polarity of the bias applied at the top EG layer. The device is 

said to operate in SE mode, when the EG/p-SiC junction is forward biased and the p-

SiC/n+-SiC junction is reverse biased (Fig. 4.1(b)). On the other hand, the device is said to 

operate in SC mode when the EG/p-SiC junction is reverse biased and the p-SiC/n+-SiC 

junction is forward biased (Figure 4.1(c)). When light is incident on the device from top 
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Figure 4.1 (a)Schematic of EG/p-SiC/n+-SiC bipolar phototransistor device structure. 

Energy band diagram showing the phototransistor device operation in Schottky 

Emitter(SE)(b) and Schottky Collector(SC)(c) modes under light illumination. 

 

i.e. from EG side, the incident light photons will be absorbed by the SiC epi layers and 

substrates. Therefore, e-h pairs will be created in these layers due to the photon absorption 

by SiC. These e-h pairs will be separated by the electric fields in the base-collector 

depletion regions in SE and SC modes. Also, as discussed in chapter 3, this device is 

expected to show a bipolar gain due to minority carrier injection from EG to p-SiC in SE 

mode. Similarly, in SC mode, the device can show a bipolar gain due to carrier injection 

from n+-SiC substrate in to p-SiC base epilayer. It is important to note that the EG is mesa 

isolated resulting in smaller junction area for the EG/p-SiC Schottky junction compared to 

the p-SiC/n+-SiC junction which forms a large area p-n junction as the p-SiC (base) epilayer 

is not mesa isolated. Later, in this present chapter 4, we will discuss the effects of the B-C 

junction area on the current-voltage characteristics of the device current(Ic) in both modes. 

As discussed in chapter 2, we note that the Schottky barrier height for the EG to n-SiC is 

0.8eV, as measured by C-V on EG/n-SiC Schottky test structures (Balachandran, 2017), 
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and is higher than the 0.5eV barrier height reported for thermally grown EG/SiC junctions 

(Coletti et al., 2010), (Coletti et al., 2013). 

4.3 SPECTRAL RESPONSE AND SPCM STUDY 

The current-voltage (IC-VCE) characteristics of the device are measured in the dark and 

under light for both SC and SE modes, by illuminating the device using a monochromatic 

light. A monochromatic light source (10nm bandpass) is used to vary the wavelength of 

incident light for these measurements. The action spectra (or spectral response) are 

reconstructed using the measured IC-VCE characteristics at each wavelength where the 

responsivity is calculated for each wavelength as discussed in chapter 3. The band diagrams 

for the device operation in SE and SC modes are shown in figures 4.1(b) and 4.1(c) in the 

respective order. 

As shown in Figures 4.2(a) and 4.2(b), a dark current of 230pA and 670nA is 

observed at VCE=20V in SC and SE modes respectively. The significantly larger dark 

current in SE-mode is due to the absence of mesa isolation at the 10μm deep backside SiC 

p-n junction, which is 1cm2, compared to the ~4.9×10-4cm2 area of the graphene/SiC 

Schottky top junction (Figure 4.1), leading to a corresponding increase in leakage area. 

However, the dark current in the SE-mode devices, 670nA, was still 3 orders of magnitude 

lower than the 100μA observed in our previous devices (Chava, Omar, et al., 2016). This 

decrease in dark current is attributed to smaller thickness of the epi-layer and also 

significant optimization of our SiC epitaxy which has led to defect reduction in our 

epilayers (Balachandran, 2017). Mesa-isolation of the base p-SiC epilayer should 
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significantly reduce the leakage (dark) current at the SiC pn junction (B-C junction) in SE-

mode to values comparable to SiC pn diodes (Table 4.1). 

Clear bipolar phototransistor action is seen in both SC and SE-modes (Yang, 

Nohava, Krishnankutty, Torreano, McPherson, et al., 1998). In SE-mode, the current 

increases starting at VCE=2V, in agreement with the 2.4eV EG/ p-SiC Schottky barrier 

estimated above (Figure 4.1). For SC-mode, the bipolar behavior is seen until VCE~10V 

(Figure 4.2(a)) beyond which the photocurrent increases sharply due to avalanche effects 

from electric field concentration at the reverse-biased EG/SiC Schottky barrier periphery 

(Baliga, 2008). In SE-mode, the B-C is a large area junction and there is no periphery due 

to the lack of mesa-isolation, so avalanche breakdown at the device periphery is not seen. 

Further, as explained in chapter 3, the avalanche breakdown for SiC B-C junction may not 

happen at low bias voltages<102V (VCE=20V here). This assertion is clearly supported by 

scanning photocurrent microscopy (SPCM) maps at 444nm (Figure 4.2(a)) (Barker et al., 

2017), where ‘hot-spots’ are seen in SC-mode at the periphery that increase in prominence 

at higher VCE, in concurrence with the sharp current increase in the photocurrent, whereas 

similar features are not observed in SE-mode. The uniform ring/halo at the device edge in 

SE-mode is due to non-specular scattering at that edge, leading to greater photocurrent in 

the non-mesa isolated SiC pn junction collector. It is evident, however, that the hot-spots 

seen in SC-mode are not visible in SE-mode, showing that sharp increase in current in SC-

mode at VCE>10V is due to avalanche from the device periphery. This avalanche effect 

may be minimized by using field-plate techniques (Baliga, 2008), although careful 

engineering may allow it to be exploited as in avalanche photodiodes (J.C. Campbell, 

2007). 
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In the SE-mode I-V curves under illumination (Figure 4.2(b)), a small hump is seen 

near ~0.7V, which is attributed to the presence of a Schottky barrier height from the edge, 

in addition to the larger one from the bulk (Figure. 4.1). As the emitter-base junction turns 

on, the influence of the parasitic smaller barrier is eventually overwhelmed by the bulk 

owing to the much larger area associated with the higher barrier. This could be due to 

independent contributions from bulk and periphery of the graphene contact, in analogy to 

SC- mode results where edge and bulk clearly give independent contributions. 

 

 
 

Figure 4.2 Experimentally measured dark and light (250nm and 300nm) current-

voltage(IC-VCE) characteristics of the device in SE(a) and SC(b) modes. The corresponding 

scanning photo-current maps (SPCM) of these devices measured at different bias(VCE) 

voltages) under 444nm laser illuminations are also shown. (For SPCM maps, the scale bar 

(in white) is 50 µm and the current scale is shown in color on the right, with a maximum 

value of 400pA). 

 

Larger absolute photocurrents(Ic) are seen in SE-mode, again due to the absence of 

mesa-isolation in SE-mode, since the circular spot size of the light from the spectrometer 
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is ~1cm2. This means that in the SE-mode, the e-h pair collection area is >>4.9×10-4cm2 

area of the graphene/SiC junction, whereas it will be comparable to this area in SC-mode, 

leading to the apparent large difference in photocurrents, despite the similar responsivities. 

R(λ), reported in Figure 4.3. R(λ) is defined as the ratio of the observed photocurrent 

(difference of current under illumination and in the dark) to the optical power incident on 

the device. R(λ) was measured under wide area illumination by comparison to a calibrated 

Si photodiode. To account for the difference in collection area discussed above, the 

absolute responsivity, R, was calibrated to measurements performed with 365nm 

illumination through a microscope focused to an area < the device area. The R(λ) values 

are higher than expected from 100% quantum efficiency (dashed line in Figure. 4.3) for 

above bandgap (~390nm for SiC) light illumination, indicating current gain in both SE and 

SC-modes. Note that, the spectral responsivity(R(𝜆)) corresponding to 100% quantum 

efficiency (η=1) is commonly used as a reference to compare the spectral responsivities of 

different photodetectors, and it is independent of the bandgap of the semiconductor 

material and is calculated by Equation. 4.1. A peak R(250nm)=25 A/W is observed in SE-

mode which corresponds to current gain g >120, as given by (E Monroy, Omnes, et al., 

2003); 

𝑅(𝜆) =
𝜆𝜂

ℎ𝑐
𝑞𝑔 =

𝜆(𝑛𝑚)

1.24×103 𝑔    (Eq.4.1) 

where, R is the measured responsivity (in A/W), 𝜆 is the incident light wavelength, h is 

Planck’s constant, c is the light velocity, q is the electron charge, where a quantum 

efficiency, η=1 is assume to estimate a lower bound on g in the final expression in Equation 

4.1. In SC-mode, a peak R(270nm)=17 A/W is measured, corresponding to g>78 although 

as discussed above, this is due to a combination of bipolar gain, and avalanche gain from 
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the device periphery at VCE=20V. At VCE<10V, avalanche gain from the periphery is 

effectively suppressed, and R is also reduced, leading to bipolar current gain, g~10. In SC-

mode, the short absorption lengths in SiC (Sridhara et al., 1999) (≈1µm at 270nm) for short 

wavelength photons results in lower R due to the recombination of the photogenerated 

carriers (X. Chen et al., 2007) at the EG/SiC Schottky collector junction. In a long-base 

bipolar device, where minority carrier injection efficiency ~1 is assumed, and that g is 

limited by base transit, the recombination time, τrec is estimated from (Sze & Ng, 2006): 

𝑔 ≈
2𝐷𝑛τ𝑟𝑒𝑐

𝑊𝑄𝑁𝑅
2      (Eq.4.2) 

, where WQNR is the quasi-neutral region width at a given voltage from the difference in 

the base-width and the depletion region at the collector side, and Dn=23cm2/Vs is the 

diffusivity of electrons in SiC(Kimoto & Cooper, 2014). This leads to τrec~20ns in both SE 

and SC-modes. In SC-mode, the recombination velocity, S at the EG/SiC interface is 

estimated from WQNR/ τrec≈105cm/s at VCE=10V, which is in excellent agreement with that 

estimated for sub-bandgap illumination previously (Barker et al., 2017) in chapter 3. 

The UV-visible rejection ratio, R(270nm)/R(400nm) is better in SC-mode ~5.6×103 

compared to ~12.3 in SE-mode. The poor visible rejection in SE-mode is attributed to 

absorption of sub-bandgap light by donor acceptor pairs (DAP) (Barker et al., 2017) present 

in the highly doped n+-SiC substrate, but not in the low-doped p-SiC, since the collection 

region in this mode spans the n+-substrate unlike the SC-mode. The contribution of 

stacking faults to the sub-bandgap response in SE-mode is excluded, shown in our previous 

devices (Barker et al., 2017), as the SPCM maps show no evidence of this (Figure 4.2). 

The R(λ) and UV-visible rejection values are compared with other wide bandgap 
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photodetectors in Table 4.1, where the present EG/SiC phototransistor device compares 

well. Here, it is also important to note that the high responsivity is achieved in the present 

devices at relatively low bias voltages 20V compared to high voltages (>100V) for the 

avalanche photodiodes (Bai, Guo, McIntosh, Liu, & Campbell, 2007). 

 

 
 

Figure 4.3 A plot for the comparison of spectral responsivity from 250-450nm for the TFS 

grown EG/SiC(13µm thick) heterojunction phototransistor device in SE and SC modes of 

operation at VCE=20V. 

 

4.4 TRANSIENT RESPONSE AND DARK NOISE MEASUREMENTS 

The response times and dark noise spectrum were measured using a virtual-ground 

transimpedance current pre-amplifier to convert the dark and photo-induced currents to a 

voltage. This output voltage signal was visualized on an oscilloscope in the time domain 

for the turn ON/OFF transient response times, and was converted into the frequency 

domain using the Fast Fourier Transform (FFT) function for the noise power current 

density (Sn(f)) measured as a function of frequency in the dark. The response times were 

measured at 320nm (largest absolute photocurrent) by mechanically chopping the light, 
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and fitting the resultant output with exponential decay/growth functions for response times 

(Figure 4.4). The photocurrent rise and decay responses under 320nm illumination are 

fitted using the equations: 

y = y0 + A1*exp(x/t1) + A2*exp(x/t2)    (Eq.4.3) 

y = y0 + A1*exp(-(x-x0)/t1) + A2*exp(-(x-x0)/t2)  (Eq.4.4) 

where, t1 and t2 represents the slow and fast time constants related to active and non-active 

areas of the device. 

 
 

 
 

Figure 4.4 Turn ON and OFF transients of the EG/SiC phototransistor device measured in 

SE(a) and SC(b) modes under 320nm illumination. 
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In SC-mode, ON/OFF response times of 10ms/47ms are extracted, whereas in SE-

mode, ON/OFF response times of 46ms/730ms are extracted. These values are significantly 

slower than the τrec=20ns estimated above, likely due to RC delays, as also seen at low 

collector currents in Si bipolar phototransistors (Kostov, Gaberl, & Zimmermann, 2013). 

This assertion is supported by the fact that the response time is slower in SE-mode, where 

the collector is a much larger area, leading to a large collector capacitance compared to 

SC-mode. Mesa-isolation of the base-collector SiC pn junction is expected to improve the 

response time in SE-mode. Faster response times should also be observable at higher light 

levels. 

 

 
 

Figure 4.5 Experimentally measured noise spectrum of the device at VCE=20V in Schottky 

Emitter (SE) mode in the frequency range of 1-100Hz. 

 

Figure 4.5 shows the measured noise power density Sn(f) (in A2/Hz) in SE mode at 

VCE=20V, along with the noise floor at this preamplifier gain setting. As shown in Figure 

4.5, the noise power density decreases linearly with frequency, indicating 1/f flicker noise 
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in SE mode, and reaches the measurement limit at frequencies >1kHz. We do not observe 

a crossover to a shot-noise limited regime in our measurements. Typically Shot noise is 

dominant noise source at low temperatures and high frequencies. In SC-mode, on the other 

hand, the dark current was only 230pA. The noise power density in SC was measured to 

be <10-28A2/Hz, the noise threshold at the corresponding pre-amplifier setting, and a 1/f 

regime was unmeasurable with our measurement setup. 

The dark noise spectral density is, therefore, estimated for the shot noise using 

Sn(f)=2eIc(dark) (Osinsky, Gangopadhyay, Yang, et al., 1998) for the SC-mode. At 

VCE=20V, white noise density Sn(f)≈6×10-29A2/Hz, is used for estimation of the noise 

equivalent power (NEP) below. The NEP is defined as the minimum optical power that 

can be detected by at the given noise level. From the measured current noise power density 

spectrum, Sn(f) (Figure 4.5), NEP, is extracted. For a bandwidth of B, the total square noise 

current is given by: 

< 𝑖𝑛
2 > = ∫ 𝑆𝑛(𝑓)𝑑𝑓= ∫ 𝑆𝑛(1)𝑑𝑓 +

1

0
∫ 𝑆𝑛(𝑓)𝑑𝑓

𝐵

1

𝐵

0
  (Eq.4.5) 

, where we assume that the value at 1Hz is assumed to be flat until 0Hz in the first integral 

on the RHS as is commonly done (Osinsky, Gangopadhyay, Lim, et al., 1998), (Gundimeda 

et al., 2017),(Q. Chen et al., 1997). The noise equivalent power (NEP) is then estimated 

using the equation:  

𝑁𝐸𝑃 =  
√⟨𝑖𝑛

2⟩

𝑅
     (Eq.4.6) 

where R is the responsivity (in A/W) of the device. Here, the highest value of R (see Figure 

4.3) is used for the estimation of NEP in both SE and SC modes. 
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Specific detectivity(D*) is another figure of merit for the photodetector. It is 

obtained by normalizing the NEP with the detector area and the bandwidth. From the NEP, 

the specific detectivity (D*) is calculated using the equation: 

𝐷∗ =  
√𝐴×𝐵

𝑁𝐸𝑃
      (Eq.4.7) 

where A is the device area in cm2, B is the bandwidth of the photodetector in Hz. Given 

that the response time is 47ms in the SC-mode, a bandwidth of 20Hz is assumed, giving 

NEP=2.3fW and D*= 4.4x1013 Jones. Similarly, since the response time in the SE-mode is 

730ms, a 1Hz bandwidth is assumed, giving NEP= 3.3x 10-12 W and D*=9.5x 109 Jones. 

These values compare favorably with other visible-blind detectors (Table 4.1). 

Mesa-isolation of the base-collector SiC pn junction should reduce the active device area 

to ~4.9×10-4A/cm2, leading to a reduction of dark current to <270pA from 670nA assuming 

the same leakage current density, pushing the NEP to <2fW. The response time should also 

improve as discussed above, with a corresponding increase in B, and consequently, the 

specific detectivity (D*) 

4.5 SUMMARY 

In summary, vertical bipolar EG/SiC bipolar device structures similar to that discussed in 

chapter 3 are fabricated. The p-SiC epilayer used in this device structure is thinner (13µm) 

compared to 30 µm thick epilayer previously used. Also, the EG used for the present 

devices is grown by selective etching of Si from SiC epi-layer by using TFS gas precursor. 

These TFS grown EG/SiC UV phototransistor devices are characterized for spectral 

responsivity, response speed, NEP and specific detectivity(D*). 
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Table 4.1 Comparison of the TFS grown EG/SiC phototransistor performance metrics with previously reported ultraviolet detectors. 

 

Device type 
Voltage

(V) 

Dark 

current 

Responsivity 

(R) at 270nm 

(A/W) 

Visible 

rejection  

(R270 :R400) 

Response 

time 
NEP(W) 

Specific 

Detectivity,D* 

(Jones) 

EG/SiC BJT (SC mode) 

20 230pA 17 5.6x103 
10ms(On) 

47ms(Off) 
2.3x10-15 

4.4x1013 

(BW=20Hz) 

10 100pA 2.2 2.2x102 N/A 1.1x10-14 
8.6x1012 

(BW=20Hz) 

5 55pA 1.1 4x102 N/A 1.7x10-14 
5.8x1012 

(BW=20Hz) 

EG/SiC BJT (SE mode) 20 670nA 25 12.3 
46ms(On) 

730ms(Off) 
3.3x 10-12 

9.5x 109 

(BW=1Hz) 

SiC pin diode1 20 <0.5pA 0.13 >104 N/A N/A N/A 

SiC Schottky2 5 8pA ̴ 0.09 >103 N/A N/A N/A 

SiC APD3 144 5pA 93(at 280nm) N/A N/A 20x10-15 
6.4x1013 

(BW=1KHz) 

GaN Schottky4 1.5 34nA ̴ 0.07 >102 150ns 3.7 x 10-9 N/A 

AlGaN Schottky5 1.35 7nA ̴ 0.07 N/A 1.6 µs 6.6 x 10-9 N/A 

AlGaN photodiode6 0.5 0.1pA ̴ 0.01 2.6x103 <0.4µs N/A N/A 

 

1 (X. Chen et al., 2007), 2 (Mazzillo et al., 2009), 3 (Bai et al., 2007), 4 (Osinsky, Gangopadhyay, Yang, et al., 1998) 5 (Osinsky, Gangopadhyay, Lim, 

et al., 1998), 6 (Sakib Muhtadi, Hwang, Coleman, Lunev, et al., 2017) 
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The device performance of the visible-blind EG/SiC phototransistor is compared in 

SE and SC modes. UV-visible rejection ratio (R270:R400) >103 is achieved, with responsivity 

~17-25A/W at low voltages (VCE=20V). This responsivity is shown to arise from both 

bipolar gain as well as avalanche from the device periphery in SC-mode. The UV-visible 

rejection ratio in SE mode, however, is compromised by DAP present in the SiC substrate.  

The response times of these devices are relatively slow, 10ms-730ms, compared to low 

responsivity photodiodes. Finally, the NEP=2.3fW and D*=4.4×1013Jones indicates 

excellent performance of these devices both in SE and SC modes and comparable to the 

state-of-the-art. 
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CHAPTER 5 

HIGH RESPONSIVITY Al0.85Ga0.15N/Al0.65Ga0.35N HIGH ELECTRON 

MOBILITY TRANSISTORS (HEMT’S) FOR SOLAR-BLIND UV 

DETECTION5 

5.1 INTRODUCTION 

As explained in chapter 1, the UV radiation can be classified into different regions 

according to the wavelength. These include UV-A(315-400nm), UV-B(280-315nm), UV-

C (200-280nm) and vacuum UV(10-200nm). Further, the long wavelength cut-off(λcutoff) 

for photon absorption in optical detectors is determined primarily by the bandgap of the 

semiconductor materials used to fabricate them. For instance, WBG materials 4H-

SiC(Eg=3.26eV) and GaN(Eg=3.4eV) have absorption cut-offs at 388nm and 365nm (both 

in UV-A region), in the respective order, and therefore these material systems are suitable 

for visible-blind UV detectors. Visible-blind UV detectors are the detectors that generates 

a photocurrent by absorbing photons of wavelengths only below 400nm (i.e. UV photons). 

Similarly, there exists another category of photodetectors called as solar-blind UV 

detectors with absorption cut-off below 290nm, i.e, these detectors generate a photocurrent 

only by the absorption of photons of wavelengths <290nm.

                                                           
5 Venkata S. N. Chava, S. Muhtadi, S. Hwang, A. Coleman, F. Asif, G. Simin, MVS 

Chandrashekhar, and A. Khan. To be submitted to Applied Physics Express. 
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There are emerging applications that require high responsivity UV detectors with 

solar blindness i.e. only responsive to light with wavelength <290nm (H. Chen et al., 2015). 

These include furnace gas control systems, as well as aerospace and harsh environment 

detection systems that require the sensing of the UV emission from plumes,or for flame 

detection for firefighters, in the presence of large amounts of visible and IR radiation. In 

the parlance of healthcare1, one must be able to distinguish UVA light (relatively harmless 

λ>315nm) from UVB and UVC light (cancer causing, used in water disinfection to kill 

bacteria λ<315nm).  

The key metric used to describe photo detectors is responsivity, R(λ) i.e. number of 

amperes of electrical photocurrent, Iph, in response to each Watt of incident optical power, 

Popt at a given wavelength, λ (Sakib Muhtadi, Hwang, Coleman, Lunev, et al., 2017): 

𝑅(𝜆) =
𝐼𝑝ℎ(𝜆)

𝑃𝑜𝑝𝑡
=

𝐼(𝜆)−𝐼(𝑑𝑎𝑟𝑘)

𝑃𝑜𝑝𝑡
    (Eq.5.1) 

Currently, the most commonly used photodetectors at UVC wavelengths are traditional 

narrow-gap semiconductors such as Si-photodiodes, which suffer from R<0.3A/W, and 

require expensive filters to achieve solar-blindness. On the other hand, for high-end 

applications, photomultiplier tubes (PMT) offer high responsivity, but require high voltage 

>1000V, necessitating bulky, expensive power supplies. While R(λ) is the most commonly 

used metric to quantify photodetector performance, with the understanding that higher gain 

gives better sensitivity, this is not always sufficient. For example, large dark currents in a 

transistor on-state gives large shot noise power(explained later in this chapter), 

compromising the sensitivity of the device(Colace, Ferrara, Assanto, Fulgoni, & Nash, 

2007). The more complete metric is the noise equivalent power (NEP), which is the lowest 

detectable Popt in the device, i.e. the Popt which becomes equal to the noise power in the 



www.manaraa.com

 

97 

 

device. Thus, in the presence of large dark current, high R(λ) devices may have large NEP, 

defeating the purpose of the high gain. Dark current must be minimized while maximizing 

R(λ) simultaneously. In addition, these high gain, low NEP devices must also give fast 

response times, which presents a fundamental tradeoff in engineering the gain and 

bandwidth (B) of these detectors. 

Photodetectors based on wide bandgap semiconductors (bandgap Eg>3.2eV i.e. 

λcutoff<1241/Eg=387nm) such as SiC(E Monroy, Omnes, et al., 2003) and GaN(E Monroy, 

Omnes, et al., 2003) can provide intrinsic visible-blindness, but require filters to achieve 

true solar blindness. In chapter 4, SiC photodetectors (Chava et al., 2017) were 

demonstrated with R>10A/W, and NEP as low as 2.3fW at 20Hz. Further, these devices 

have response times in the milli-second (ms) range. While this is fast enough for imaging 

applications at 24Hz, these devices are still slower than the micro-second (μs) response 

times offered by photodiodes, or PMT’s.  

Therefore, it is important to design and fabricate semiconductor UV detectors that 

are suitable for solar-blind UV detection. As explained, the absorption cut-off is 

determined by the bandgap of absorbing semiconductor material. Only ultra-wide 

bandgap(UWBG) semiconductors (Eg>4.3eV, λcutoff<290nm) such as AlxGa1-xN (x>0.5) or 

Ga2O3 provide intrinsic solar blindness. Among these two material systems, AlxGa1-xN 

based UV detectors have been successfully demonstrated by several groups for solar-blind 

UV detection. As discussed in chapter 1 (Figure 1.11), by increasing the Al mole fraction 

(from x=0 to 1) in AlxGa1-xN UV detectors, the absorption cut-off wavelength can be 

shifted from 365nm(x=0) to 200nm(x=1) in the UV spectrum. Further, due to their direct 



www.manaraa.com

 

98 

 

bandgap they offer spectral selectivity (have sharp cut-off wavelength) compared to other 

WBG such as SiC which is an indirect bandgap semiconductor. 

Recently, AlxGa1-xN field effect transistor (FET) detectors with 

R(λ)>105A/W(Yoshikawa et al., 2016) (S. Muhtadi et al., 2017) have been demonstrated 

with solar rejection ratios >103, while fast response <1μs has been demonstrated in AlxGa1-

xN photodiodes2, with NEP as low as 6nW at bandwidth (B)=100kHz (Osinsky, 

Gangopadhyay, Lim, et al., 1998). The AlxGa1-xN Metal-Semiconductor-Metal (MSM) 

detectors with Al fraction x>0.5 have shown high photosensitivity of 106 A/W and a 

rejection ratio of 106 (Yoshikawa et al., 2017).  Also, recently few research groups have 

shown high temperature operation of AlxGa1-xN channel HEMT devices that are suitable 

for high power and RF applications. These UWBG transistors also provide high 

temperature operation up to 300°C demonstrated with little loss of current handling (Sakib 

Muhtadi, Hwang, Coleman, Asif, et al., 2017), (Neudeck et al., 2002), ideal for harsh 

environment applications where short wavelength ((as low as 𝜆=200nm) or deep UV 

(DUV) detection is needed. These promising results open up the potential for high Al 

content AlxGa1-xN (x>0.5) based photodetectors, where high R(λ) and low NEP might be 

achievable simultaneously. The challenges for AlxGa1-xN x>0.5 technology for solar-blind 

detection are in materials growth and contact formation (Sakib Muhtadi, Hwang, Coleman, 

Asif, et al., 2017), (Baca et al., 2016), (Bajaj, Akyol, Krishnamoorthy, Zhang, & Rajan, 

2016), which are currently being investigated (Yoshikawa et al., 2017).  

As discussed in chapter 1, the Al mole fraction is key to controlling the absorption 

spectrum (or spectral response) of AlxGa1-xN based UV detectors. In this present study, the 

potential for AlxGa1-xN high electron mobility transistors (HEMT’s) is discussed as high-
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performance UV photodetectors. In these HEMT devices, a highly conductive 2 

dimensional electron gas(2DEG) induced at the interface between Al0.85Ga0.15N / 

Al0.65Ga0.35N interface acts as channel.  Using an x=0.65 for channel and x=0.85 for barrier, 

a polarization doped 2DEG is formed at the interface (Figure 5.1) due to the difference in 

c/a ratio of the two alloys, similar to AlGaN/GaN HEMT’s (Mishra, Parikh, & Wu, 2002).  

 

 

 

Figure 5.1 Schematic of HEMT device structure with Al0.85Ga0.15N barrier layer and 

Al0.65Ga0.35N channel layer. 

 

This 2DEG offers a high electron mobility ~μn~300cm2/Vs (Sakib Muhtadi, 

Hwang, Coleman, Asif, et al., 2017), as explained later. The mobility of 2DEG in 

Al0.65Ga0.35N FET channel, on the other hand, is ~100cm2/Vs (S. Muhtadi et al., 2017). 

This implies three times(3x) higher drain current in the Al0.85Ga0.15N/Al0.65Ga0.35N HEMT 

devices, and therefore potentially three times(3x) higher responsivity (R(λ)) in these new 

HEMT device structures. Moreover, this HEMT structure has a very thin(~20-30nm) 

Al0.85Ga0.15N barrier layer. Since the band gap of this barrier layer is very high ((Eg=5.8eV, 

λcutoff=213nm), it acts as a transparent barrier layer and allows the incident DUV light to 



www.manaraa.com

 

100 

 

penetrate into the Al0.65Ga0.35N channel layer, and the direct bandgap of Al0.65Ga0.35N 

ensures complete absorption of DUV light entering channel layer through barrier layer. 

5.2 EXPERIMENTAL DETAILS 

The device epilayer structures used in this study were grown with a 3µm thick AlN buffer 

layer over basal plane sapphire substrates using a growth procedure reported earlier(Fareed 

et al., 2007). The (102) off-axis X-ray peak linewidth for the AlN buffers was measured to 

be 330 arc-secs. This corresponds to an overall dislocation density ~1x108 cm-2 (Fareed et 

al., 2007) based on our previous calibrations. The undoped channel Al0.65Ga0.35N layer for 

our structures was 0.5 µm thick. Reciprocal space lattice Mapping (RSLM) shows it to 

grow pseudomorphic over the AlN buffer.  In contrast, the GaN channel layers are relaxed 

with a thickness of ~1-2μm, in case of AlGaN/GaN HEMT structures(Asif et al., 2014). 

This qualitative difference will become important in understanding the response time of 

the HEMT photodetector below (Iwaya et al., 2009). 

The 30nm thick Al0.85Ga0.15N barrier layers were then grown to form the 

polarization doped heterostructure as shown in HEMT structure in Figure 5.1, with the 

band diagram (Grundmann, n.d.) shown in Figure 5.2. These layers were also grown 

pseudomorphically as confirmed by XRD. The sheet resistivity of the 2DEG channel was 

1900 /□ as measured by an eddy current non-contact technique. The dark threshold 

voltage, VT as measured by Hg-probe C-V system was -8V (Sakib Muhtadi, Hwang, 

Coleman, Asif, et al., 2017). This threshold voltage is in agreement with VT measured from 

I-V, as seen below in Figure 5.4(b). The effective 2DEG channel mobility for these devices 

was measured to be ~300cm2/Vs (Sakib Muhtadi, Hwang, Coleman, Asif, et al., 2017), 

showing that the threading dislocations do not degrade the mobility due to efficient 
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screening by the high electron concentration in the channel. 

The Al0.65Ga0.35N channel HEMT devices were then fabricated using standard 

photo-lithography, mesa-etching and liftoff processing. After the mesa reactive-ion etching 

to isolate the Al0.85Ga0.15N barriers and the induced conducting channel at its interface with 

the Al0.65Ga0.35N layer Zr/Al/Mo/Au (10/100/40/30nm) ohmic-contacts and Ni/Au 

(100/100nm) gates were metalized. The ohmic-contacts were annealed at 950oC for 30 sec.  

The gate-length LG for all the devices was 1.8 µm. Figure 5.1 shows the device structure, 

and Figure 5.2 shows corresponding band diagram (Grundmann, n.d.).  

 
 

Figure 5.2 Band diagram of the Al0.85Ga0.15N/Al0.65Ga0.35N HEMT device under 

illumination. The distance is measured from the top of the device. As shown, optically 

generated electrons will be accumulated near the barrier/channel interface forming 2DEG 

and the holes floating away from this interface. 

 

Figure 5.3(b) shows the cathodoluminescence (CL) spectrum of the fully fabricated 

device taken in a scanning electron microscope (SEM) with a built-in parabolic mirror. The 

spectrum shows clear band-edge emission at ~250nm, with a near band-edge signal at 

~265nm, corresponding to the Al0.65Ga0.35N channel. The micrograph shown in Fig. 5.3(a) 
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is taken with the CL spectrometer set to the peak emission at 250nm (10nm slit width), and 

scanned across the device, with the CL signal measured with an auxiliary input in the SEM. 

The Al0.85Ga0.15N barrier mesa edges are clearly visible, even through the metal contacts 

giving an electrically active light absorbing area of 260x100μm2.  

 

 
 

Figure 5.3 (a) CL image of the HEMT device under 250nm illumination. As shown, these 

are 2 finger devices consisting 2 source pads. The barrier mesa edges are highlighted as 

red dotted lines. (b) CL spectrum of the same device. 

 

The photodetector characteristic results discussed here after are based on 

measurements of a 2-finger HEMT device (Figure 5.3(a)), fabricated as discussed above, 

with 100μm width and a source-drain distance of 8μm. The I-V measurements in the dark 

and under illumination were performed using an HP4155C parameter analyzer with a probe 

station. Similarly, capacitance-voltage (C-V) measurements were performed on large area 

Schottky-gate test structures fabricated on the same chip, with area 2×10-4cm2 at 1kHz. 

The photoresponse measurements were performed using a monochromator with a Xe-arc 

lamp source, and the illumination wavelength is varied from 500 nm down to 220nm. The 

light was illuminated from the top of the device at a 45° angle, with a spot size of ~1cm2. 

The optical power Popt of light incident on the device is measured using a Thorlabs UV-
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enhanced Si photodiode. The photocurrent was then measured and normalized to the beam 

power. The extracted relative responsivity was calibrated to a broad area hand-held 254nm 

Hg-vapor lamp with a uniform illumination density at 6.5μW/cm2, comparable to the power 

in the monochromator beam at 254nm to obtain an absolute R(λ) by using Equation 5.1. 

The noise and ON/OFF transient measurements were performed with a Keithley 

2610 2-channel source-meter unit (SMU). The two channels (channel-A and channel-B) in 

the SMU were used to apply gate voltage(VG) and drain voltage(VD) to the device. On the 

other hand, the device source is routed into a current trans-impedance pre-amplifier whose 

input functions as a virtual ground to measure the drain current ID, which was also 

monitored using the source-meter. The output voltage from the pre-amplifier was fed into 

an oscilloscope where the time dependence of current under 250nm illumination was 

measured. In the dark, the drain current was allowed to stabilize for 5 minutes before taking 

data. For noise measurements, the time trace of the dark current was converted to a 

frequency dependence using the FFT function on the oscilloscope, enabling measurement 

of the dark noise spectrum between 1-100Hz. 

5.3 RESULTS AND DISCUSSION 

Figure 5.4(a) shows the measured output characteristics or family of curves(ID-VSD) under 

dark and 254nm illumination. A 254nm UV LED lamp is used for measuring these output 

characteristics, and the illumination power used for these measurements is fixed at 6.5 

μW/cm2 as measured as by using a calibrated Si photodiode. Similarly, the transfer 

characteristics (ID-VGS) of the device are measured both in dark and under 6.5 μW/cm2 

254nm illumination. Figure 5.4(b) shows the transfer characteristics, i.e. drain current (IDS) 
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characteristics measured as a function of gate voltage(VGS), in saturation region of the 

device for VDS=+15V.  

As clearly shown in these figures, the UV illumination on to the device causes an 

increase in the overall drain current level. This increase in drain current (ID) is understood 

by considering the incident photon energy (4.9eV) of 254nm UV lamp. Since the incident 

254nm photons have energy greater than the bandgap of the Al0.65Ga0.35N channel layer 

which is ~4.8eV, these DUV photons will be absorbed in the channel layer and thus 

creating e-h pairs as shown in Figure 5.2. The holes diffuse away from the interface, while  

 

     

 

Figure 5.4 (a) Output characteristics(IDS-VDS) of the HEMT photodetector in the dark 

(black curves) and under 254nm illumination (red curves). While the saturation current ID 

is higher under illumination than in the dark, it is lower under illumination in the triode 

region due to lower mobility arising from poorer carrier confinement under illumination. 

(b) Transfer characteristics(ID-VGS) of device overlaid with C-V characteristic of large area 

test structure on the same chip in the dark and under the same 254nm illumination. 

 

electrons fall into the quantum well, leading to an increase in the electron sheet 

concentration, ns, in the well. The high electron sheet concentration in this quantum well 

also called as 2DEG results in higher drain current ID in the current of the HEMT device. 
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This increase in ns is accompanied by a reduction in confinement in the quantum well for 

the 2DEG. This is also manifested in the output curves, as shown in Figure 5.4(a), where 

the triode region shows weaker slope under illumination indicating lower channel mobility, 

and ID eventually saturates at a higher current under illumination.  

The gate-source C-V performed on large area Schottky gate test structures, also 

shows an increase in overall carrier concentration in the channel under 254nm illumination, 

manifested as a ~0.1V shift. As shown in Figure 5.4(b), the sheet carrier ns ≈1.2x1013cm-2. 

This sheet carrier concentration, ns is estimated by calculating the area of C-V curve in 

dark. 

 

 
 

Figure 5.5 Responsivity action spectrum as a function of gate voltage. Vertical dotted line 

in black at 280nm shows the absorption edge of Al0.65Ga0.35N channel of the HEMT device 

used in this study. 

 

The spectral responsivity (or action spectrum) for the photodetector is shown from 

220-520nm in Figure 5.5, for 3 different VGS. A peak R(230nm) =2.8×106A/W is seen in 

the on-state, decreasing to ~103A/W near threshold where NEP is the lowest (as will be 

discussed later in this section). Solar rejection ratio ~103 is seen across the VGS range, 
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although a strong visible response is observed. Here, the solar rejection ratio for the HEMT 

device is defined as the ratio of peak responsivity corresponding to illumination 

wavelengths below 290 nm to the responsivity corresponding to 300 nm (i.e. wavelengths 

above 290nm). Since the AlN templates were grown at a different time than the HEMT 

devices, it is expected that trapping effects should decrease significantly if the entire 

structure is grown in-situ. 

These HEMT photodetectors show excellent saturation, which indicates high 

output resistance, ro, ideal for implementing these phototransistors in circuits. Large ro 

leads to high small-signal voltage gain for detecting small light intensities. Moreover, large 

ro also minimizes the thermal noise in photodetectors, where the spectral noise density as 

a function of frequency, Sn, thermal(f) in A2/Hz is: 

𝑆𝑛,𝑡ℎⅇ𝑟𝑚𝑎𝑙(𝑓) = 4𝑘𝑇/𝑟𝑜    (Eq.5.2) 

, which near threshold at VGS=-8V is ~3×10-28A2/Hz. This leads to a dark noise current 

√𝑠𝑛,𝑡ℎⅇ𝑟𝑚𝑎𝑙(𝑓)𝐵  ~20fA at a bandwidth B=1Hz. The dark current just below threshold is 

~0.3nA, giving a dark noise density: 

𝑆𝑛,𝑑𝑎𝑟𝑘 = 2𝑞𝐼𝐷(𝑉𝐺𝑆, 𝑉𝐷𝑆 = 10𝑉)   (Eq.5.3) 

,which near threshold gives a noise current of 10fA.  

In Figure 5.5(f), using the measured dark currents in Fig. 5.3(a), the white noise 

components are estimated as a function of gate voltage using the Equations 5.2 and 5.3, 

assuming a bandwidth of 1Hz, using: 

𝑖𝑛𝑜𝑖𝑠ⅇ,𝑤ℎ𝑖𝑡ⅇ(𝑉𝐺𝑆, 𝑉𝐷𝑆 = 10𝑉) = √𝑆𝑛,𝑡ℎⅇ𝑟𝑚𝑎𝑙𝐵 + 𝑆𝑛,𝑑𝑎𝑟𝑘𝐵  (Eq.5.4) 
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The white noise component estimated here is compared with the measured noise power 

(Fig. 5.6(f)), Sn,1/f(1) , which is seen to be completely dominated by 1/f flicker noise. The 

lowest noise in saturation is displayed at VDS=10V, for our measurements. 

 

   
 

Figure 5.6 Noise spectrum in the dark of the HEMT as a function of gate voltage VGS 

showing clear flicker 1/f2 noise. (a) VGS=-8V, Id(dark)=0.3nA, (b) VGS=-7.9V, 

Id(dark)=5.8nA, (c) VGS=-7.5V, Id(dark)=4.3μA, (d) VGS=-7.0V, Id(dark)=47.8μA (e) 

VGS=-5V, Id(dark)=746μA.  (f) Comparison of measured 1/f2 noise current and predicted 

white noise from dark current characteristics as a function of VGS.  Y-axis shows VGS 

dependence of the responsivity at λ=220nm, with the NEP values shown next to each data 

point. The inset shows the on and off photoresponse transients, with ~20s times in both 

directions. 

 

The measured flicker noise spectral density for these HEMT’s is ~105 higher, in 

comparison with EG/SiC photodetectors discussed in chapter 4, for similar dark currents 

and device areas. This large flicker noise has a 1/f2 dependence, sometimes called a 

Lorentzian dependence to distinguish it from normal 1/f noise, and is attributed to slow 

trapping effects often seen in III-N devices (Yan Kuin Su et al., 2003). From here, Sn,1/f
2(1) 

will be used to refer to the measured 1/f2 noise at 1Hz, leading to 𝑖𝑛𝑜𝑖𝑠ⅇ,1/𝑓2 = √𝑆𝑛,1/𝑓2(1) 

assuming B=1Hz. 
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Using the measured photocurrent i.e. ID(λ)-ID(dark) from output curve 

measurements (Figure 5.2(a)), R(λ) was extracted as a function of VGS (shown in Figure 

5.5), and is seen to increase with dark current as expected. The VGS dependence of R(λ) is 

shown for λ=220nm in Fig. 5.6(f). The R(220nm) decreases near the threshold voltage, 

although this is also accompanied by a sharp decrease in inoise,1/f
2, leading to an overall 

improvement in NEP, defined as: 

𝑁𝐸𝑃 = 𝑖𝑛𝑜𝑖𝑠ⅇ,1/𝑓2/𝑅(𝜆)    (Eq.5.5) 

, shown in Fig. 5.6(f) next to each R(λ, VGS) data point. Even at VGS=-7V, where the HEMT 

is in the on-state, the NEP is in the pW range, surpassing Si photodiodes (Hamamatsu, 

2009) in the DUV, dropping to the fW range at threshold (Table 5.1). 

The specific detectivity(D*) for these detectors is also estimated, as described in 

chapter 4, by using the equation:  

𝐷∗ = √𝐴𝐵/𝑁𝐸𝑃     (Eq.5.7) 

, where A=2.5×10-4cm2 is the absorbing mesa area (Fig. 5.2(a)) and B is the bandwidth.  

This UWBG Al0.65Ga0.35N channel HEMT shows superior performance in most 

metrics, with among the lowest NEP for a solar-blind detector at these DUV wavelengths.



www.manaraa.com

 

 

 

1
0
9
 

Table 5.1 Comparison of Al0.85Ga0.15N/Al0.65Ga0.35N HEMT UV detector performance metrics with previous works. 

 

Device R (A/W) 

Solar 

rejection 

(RPeak:R300nm) 

Response 

time 

Dark 

Current 

(nA) 

NEP (W) 

At 220nm 

Specific 

Detectivity, 

D* (Jones) 

This work 

-8V 7.8×102 ~102 20s 0.3 4.7 fW 
3.3x1012 

(BW=1Hz) 

+4V 1x106 ~5x102 N/A 6.5x106 N/A N/A 

AlGaN/GaN HFET1 105 >1 
1.9ms (ON) 

2.5ms (OFF) 
1 N/A N/A 

AlGaN/AlGaN 

HFET2 3x103 >104 N/A 0.05 N/A N/A 

AlGaN/AlGaN 

MSM PD3 >106 >106 0.2s (ON) 

1000s (OFF) 
0.01 N/A N/A 

SiC APD4 93 

(At 280nm) 
N/A N/A 0.005 

20 fW 

(At 280nm) 

6.4x1013 

(BW=1KHz) 

EG/SiC BJT5 17 

(At 270nm) 
<1 

10ms (ON) 

46ms (OFF) 
0.2 

~2.3fW 

(At 270nm) 

4.4x1013 

(BW=20Hz) 

 

1 (Iwaya et al., 2009), 2 (Yoshikawa et al., 2016), 3 (Yoshikawa et al., 2017), 4 (Bai et al., 2007), 5 (Chava et al., 2017)
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In Table 5.1, the photodetector results of the present HEMT transistor are compared with 

other key related results in DUV detection 

As shown in Figure. 5.4(b), the C-V characteristic curves measured at 1kHz under 

6.5μW/cm2 illumination at 254nm shifts more negative by 0.1V near threshold at VGS=-

8V. In the dark, increasing VGS by 0.1V increases IDS from 0.3nA to 5.8nA (Figure 5.4(a)), 

implying a sub-threshold swing of ~80mV/decade, increasing to ~120mV/decade at VGS=-

7.5V, in excellent agreement with the 98mV/decade measured for other devices on the 

same chip (Sakib Muhtadi, Hwang, Coleman, Asif, et al., 2017). Thus, a pure photovoltaic 

response should result in a photocurrent of 5.5nA. However, the observed increase in ID 

under illumination is significantly larger ~2μA (Figure 5.6(f) inset), indicating that 

persistent photoconductivity due to trapping is responsible for high ID.  

To understand the origin of these traps, the sub-threshold slope(SS) in this transistor 

is calculated to estimate the density of interface traps (Baca et al., 2016),(Sze & Ng, 2006): 

𝑆𝑆(
𝑚𝑉

𝑑ⅇ𝑐
) =

2.303𝑘𝑇

𝑞
[1 +

𝑞𝐷𝑖𝑡

𝐶𝐺(𝑉𝑇)
]   (Eq.5.6) 

, where Dit is the density of interface traps, CGS is the measured gate capacitance. From the 

measured SS=80mV/dec near threshold above, (Figure. 5.4(b)), which is comparable to the 

75mV/dec SS measured by Baca et.al (Baca et al., 2016), Dit<3×1010cm-2 is estimated using 

CGS(-8V)<0.01μF/cm2 (Figure 5.3(b)) just below threshold to ensure that the capacitance 

and conductivity is entirely due to the barrier/channel interface, and not the 

substrate/channel interface. This suggests that the top Al0.85Ga0.15N/Al0.65Ga0.35N 

barrier/channel interface is unlikely to be responsible for the persistent photoconductivity. 

We also exclude absorption of 254nm by the barrier layer, because the bandgap for 
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Al0.85Ga0.15N is ~5.7eV greater than the energy of 254nm photons (4.9eV). Thus, persistent 

photoconductivity from surface barrier modulation as seen in AlGaN/GaN (Koley et al., 

2002) cannot be responsible for λ>210nm, the band-edge for the barrier. 

This leaves the Al0.65Ga.35N/AlN channel/template interface. The AlN templates 

were grown at a different time from the HEMT structure, which could lead to trap states at 

this interface. Moreover, the carrier dynamics under UV-illumination suggest that holes 

could get trapped at this interface, as the electric field in the Al0.65Ga0.35N channel drives 

holes from e-h pair creation to the back interface, as illustrated in Figure 5.2. 

The ON/OFF response time characteristics at 250nm (Figure 5.6(f) inset) show 

slow transients ~20s, providing strong experimental evidence of this trapping effect (Koley 

et al., 2002). The observation of the 1/f2 noise (Figure 5.6(a-e)) correlates with this slow 

response time, as Sn~[1+(f/f0)
2]-1~1/f2 for f>f0, where f0 is the characteristic frequency 

associated with the trapping(Yan Kuin Su et al., 2003). Thus, reducing trapping effects 

through growth optimization of the AlN template/Al0.65Ga0.35N channel interface will 

reduce 1/f2 noise, while simultaneously increasing speed. One solution to electrically 

isolate the 2DEG channel from these traps is to use a polarization-doped graded back 

barrier, graded from AlN down to the Al0.65Ga0.35N channel region. 

Note that the access regions between source-gate and gate-drain are also modulated 

by the incident light. Since the access regions are always in the ‘on’ state, they can also 

display persistent photoconductivity (Sze & Ng, 2006) as in photoconductors. In the 

present measurements, the time-constant for the on/off response times decreased somewhat 

from the >20s measured above near threshold to ~10s, still displaying a slow time-constant. 
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In other words, the response time was relatively insensitive to VGS. However, the access 

regions are tentatively eliminated as responsible for the slow response, as Iwaya et. al 

(Iwaya et al., 2009) report fast response times in the 1-3 ms regime for similar geometry 

visible-blind Al0.21Ga0.79N/GaN HEMT’s with a p-GaN gate. However, their GaN channel 

layers are ~2μm thick on AlN templates on sapphire, and are metamorphic. Thus, the 

absorbing region ~0.4μm22 is far from the AlN/GaN growth interface, minimizing the 

impact of trapping from this interface. This suggests the use of a thick channel epilayer as 

another potential solution to increase the speed of the device. The effect of device 

architecture on the response time and noise bears further investigation, as GaAs MESFET 

photodetectors have shown sub-ns response times (Flesner, Davis, & Wieder, 1982). 

5.4 SUMMARY 

In summary, a DUV detector based on Al0.85Ga0.15N/Al0.65Ga0.35N HEMT device structure 

is demonstrated. This device showed a NEP=4.7fW when operated near threshold which 

is VGS=-8V. A peak responsivity(R) as high as 3x106A/W is achieved at 230nm for 

VGS=+4V, in saturation mode at VDS=+10V. A solar-rejection ratio of ~102 is observed at 

220nm:300nm. The small sub-bandgap response is attributed to point defects in the 

epilayers, likely from the AlN/Al0.65Ga0.35N (template/channel) growth interface. The 

photodetector is slow, with >20s response times for both on and off transients, again 

attributed to trapping at the AlN template/Al0.65Ga0.35N growth interface, which may be 

improved by growth optimization. The elimination of the trapping should also reduce the 

1/f2 noise, and consequently improving the NEP also.



www.manaraa.com

 

113 

 

REFERENCES

Anderson, T. J., Hobart, K. D., Greenlee, J. D., Shahin, D. I., Koehler, A. D., Tadjer, M. 

J., … Kub, F. J. (2015). Ultraviolet detector based on graphene/SiC heterojunction. 

Applied Physics Express, 8(4), 41301. https://doi.org/10.7567/APEX.8.041301 

Asif, F., Lachab, M., Coleman, A., Ahmad, I., Zhang, B., Adivarahan, V., & Khan, A. 

(2014). Deep ultraviolet photopumped stimulated emission from partially relaxed 

AlGaN multiple quantum well heterostructures grown on sapphire substrates. Journal 

of Vacuum Science & Technology B, Nanotechnology and Microelectronics: 

Materials, Processing, Measurement, and Phenomena, 32(6), 61204. 

https://doi.org/10.1116/1.4898694 

Ayalew, T. (2004). SiC semiconductor devices technology, modeling and simulation. 

Baca, A. G., Armstrong, A. M., Allerman, A. A., Douglas, E. A., Sanchez, C. A., King, M. 

P., … Kaplar, R. J. (2016). An AlN/Al0.85Ga0.15N high electron mobility transistor. 

Applied Physics Letters, 109(3), 33509. https://doi.org/10.1063/1.4959179 

Bai, X., Guo, X., McIntosh, D. C., Liu, H. D., & Campbell, J. C. (2007). High detection 

sensitivity of ultraviolet 4H-SiC avalanche photodiodes. IEEE Journal of Quantum 

Electronics, 43(12), 1159–1162. https://doi.org/10.1109/JQE.2007.905031 

Bajaj, S., Akyol, F., Krishnamoorthy, S., Zhang, Y., & Rajan, S. (2016). AlGaN channel 

field effect transistors with graded heterostructure ohmic contacts. Applied Physics 

Letters, 109(13), 133508. https://doi.org/10.1063/1.4963860 

Balachandran, A. (2017). High Quality Low Offcut 4H-SiC Epitaxy and Integrated Growth 

of Epitaxial Graphene for Hybrid Graphene/SiC Devices. University of South 

Carolina. 

Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. 

(2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano, 8(3), 902–

907. 

Baliga, B. J. (2008). Fundamentals of Power Semiconductor Devices. Springer. 

https://doi.org/10.1007/978-0-387-47314-7 

Barker, B. G., Chava, V. S. N., Daniels, K. M., Chandrashekhar, M. V. S., & Greytak, A. 

B. (2017). Sub-bandgap response of graphene/SiC Schottky emitter bipolar 

phototransistor examined by scanning photocurrent microscopy. 2D Materials, 5(1), 

11003. 

Blake, P., Brimicombe, P. D., Nair, R. R., Booth, T. J., Jiang, D., Schedin, F., … 

Novoselov, K. S. (2008). Graphene Based Liquid Crystal Device. Nano Letters, 8, 



www.manaraa.com

 

114 

 

1704. Retrieved from 

http://pubs.acs.org/doi/abs/10.1021/nl080649i%0Ahttp://pubs.acs.org/doi/pdfplus/10

.1021/nl080649i 

Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., … Stormer, H. 

L. (2008). Ultrahigh electron mobility in suspended graphene. Solid State 

Communications, 146(9–10), 351–355. https://doi.org/10.1016/j.ssc.2008.02.024 

Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C. (2010). Graphene photonics and 

optoelectronics. Nature Photonics, 4(9), 611–622. 

https://doi.org/10.1038/nphoton.2010.186 

Campbell, J. C. (2007). Recent advances in avalanche photodiodes. JOURNAL OF 

LIGHTWAVE TECHNOLOGY, 25(1), 109–121. 

https://doi.org/10.1109/LEOS.2008.4688747 

Campbell, J. C., Dentai, A. G., Qua, G. J., & Ferguson, J. F. (1983). Avalanche InP/InGaAs 

heterojunction phototransistor. IEEE Journal of Quantum Electronics, 19(6), 1134–

1138. 

Cançado, L. G., Jorio, A., Ferreira, E. H. M., Stavale, F., Achete, C. A., Capaz, R. B., … 

Ferrari, A. C. (2011). Quantifying defects in graphene via Raman spectroscopy at 

different excitation energies. Nano Letters, 11(8), 3190–3196. 

https://doi.org/10.1021/nl201432g 

Chava, V. S. N., Barker, B. G., Balachandran, A., Khan, A., Simin, G., Greytak, A. B., & 

Chandrashekhar, M. V. S. (2017). High detectivity visible-blind SiF4grown epitaxial 

graphene/SiC Schottky contact bipolar phototransistor. Applied Physics Letters, 

111(24), 243504. https://doi.org/10.1063/1.5009003 

Chava, V. S. N., Chandrashekhar, M. V. S., Daniels, K. M., Barker, B. G., & Greytak, A. 

B. (2016). Epitaxial graphene (EG)/SiC based Schottky emitter bipolar 

phototransistors for UV detection and effect of hydrogen intercalation on device I-V 

characteristics. In Proceedings of IEEE Sensors (pp. 1–3). 

https://doi.org/10.1109/ICSENS.2016.7808587 

Chava, V. S. N., Omar, S. U., Brown, G., Shetu, S. S., Andrews, J., Sudarshan, T. S., & 

Chandrashekhar, M. V. S. (2016). Evidence of minority carrier injection efficiency 

>90% in an epitaxial graphene/SiC Schottky emitter bipolar junction phototransistor 

for ultraviolet detection. Applied Physics Letters, 108(4). 

https://doi.org/10.1063/1.4940385 

Chen, H., Liu, K., Hu, L., Al-Ghamdi, A. A., & Fang, X. (2015). New concept ultraviolet 

photodetectors. Materials Today, 18(9), 493–502. 

https://doi.org/10.1016/j.mattod.2015.06.001 

Chen, Q., Yang, J. W., Osinsky, A., Gangopadhyay, S., Lim, B., Anwar, M. Z., … Temkin, 

H. (1997). Schottky barrier detectors on GaN for visible–blind ultraviolet detection. 

Applied Physics Letters, 70(17), 2277–2279. https://doi.org/10.1063/1.118837 

Chen, X., Zhu, H., Cai, J., & Wu, Z. (2007). High-performance 4H-SiC-based ultraviolet 



www.manaraa.com

 

115 

 

p-i-n photodetector. Journal of Applied Physics, 102(2), 24505. 

https://doi.org/10.1063/1.2747213 

Chow, T. P., Khemka, V., Fedison, J., Ramungul, N., Matocha, K., Tang, Y., & Gutmann, 

R. J. (2000). SiC and GaN bipolar power devices. Solid-State Electronics, 44(2), 277–

301. https://doi.org/10.1016/S0038-1101(99)00235-X 

Colace, L., Ferrara, P., Assanto, G., Fulgoni, D., & Nash, L. (2007). Low dark-current 

germanium-on-silicon near-infrared detectors. IEEE Photonics Technology Letters, 

19(22), 1813–1815. https://doi.org/10.1109/LPT.2007.907578 

Coletti, C., Forti, S., Principi, A., Emtsev, K. V., Zakharov, A. A., Daniels, K. M., … 

Starke, U. (2013). Revealing the electronic band structure of trilayer graphene on SiC: 

An angle-resolved photoemission study. Physical Review B, 88(15), 155439. 

https://doi.org/10.1103/PhysRevB.88.155439 

Coletti, C., Riedl, C., Lee, D. S., Krauss, B., Patthey, L., Von Klitzing, K., … Starke, U. 

(2010). Charge neutrality and band-gap tuning of epitaxial graphene on SiC by 

molecular doping. Physical Review B, 81(23), 235401. 

https://doi.org/10.1103/PhysRevB.81.235401 

Coraux, J., N’Diaye, A. T., Busse, C., & Michely, T. (2008). Structural coherency of 

graphene on Ir(111). Nano Letters, 8(2), 565–570. https://doi.org/10.1021/nl0728874 

Daas, B. K. (2012). PLASMONICS USING HIGH QUALITY EPITAXIAL GRAPHENE: 

AN APPROACH TOWARDS NEXT-GENERATION OPTICAL COMPUTING. 

Daas, B. K., Daniels, K. M., Sudarshan, T. S., & Chandrashekhar, M. V. S. (2011). 

Polariton enhanced infrared reflection of epitaxial graphene. Journal of Applied 

Physics, 110(11), 1–7. https://doi.org/10.1063/1.3666069 

Daas, B. K., Nomani, W. K., Daniels, K. M., Sudarshan, T. S., Koley, G., & 

Chandrashekhar, M. V. S. (2012). Molecular Gas Adsorption Induced Carrier 

Transport Studies of Epitaxial Graphene Using IR Reflection Spectroscopy. Materials 

Science Forum, 717–720, 665–668. 

https://doi.org/10.4028/www.scientific.net/MSF.717-720.665 

Daas, B. K., Omar, S. U., Shetu, S., Daniels, K. M., Ma, S., Sudarshan, T. S., & 

Chandrashekhar, M. V. S. (2012). Comparison of epitaxial graphene growth on polar 

and nonpolar 6H-SiC faces: On the growth of multilayer films. Crystal Growth and 

Design, 12(7), 3379–3387. https://doi.org/10.1021/cg300456v 

Dawlaty, J. M., Shivaraman, S., Strait, J., George, P., Chandrashekhar, M., Rana, F., … 

Chen, Y. (2008). Measurement of the optical absorption spectra of epitaxial graphene 

from terahertz to visible. Applied Physics Letters, 93(13), 131905. 

https://doi.org/10.1063/1.2990753 

Dresselhaus, M. S., & Dresselhaus, G. (2002). Intercalation compounds of graphite. 

Advances in Physics, 51(1), 1–186. https://doi.org/10.1080/00018730110113644 

Ellison, A. (1999). Silicon Carbide Growth by High Temperature CVD Techniques. 

https://doi.org/10.1007/978-94-009-2101-6 



www.manaraa.com

 

116 

 

Emtsev, K. V., Speck, F., Seyller, T., Ley, L., & Riley, J. D. (2008). Interaction, growth, 

and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative 

photoelectron spectroscopy study. Physical Review B - Condensed Matter and 

Materials Physics, 77(15), 155303. https://doi.org/10.1103/PhysRevB.77.155303 

Fareed, Q., Adivarahan, V., Gaevski, M., Katona, T., Mei, J., Ponce, F. a., & Khan, A. 

(2007). Metal–Organic Hydride Vapor Phase Epitaxy of Al x Ga 1- x N Films over 

Sapphire. Japanese Journal of Applied Physics, 46(No. 31), L752–L754. 

https://doi.org/10.1143/JJAP.46.L752 

Flesner, L. D., Davis, N. M., & Wieder, H. H. (1982). High speed response of a GaAs 

metal-semiconductor field-effect transistor to electron-beam excitation. Journal of 

Applied Physics, 53(5), 3873–3877. https://doi.org/10.1063/1.331087 

Freitag, M. (2008). Graphene: Nanoelectronics goes flat out. Nature Nanotechnology, 3(8), 

455–457. https://doi.org/10.1038/nnano.2008.219 

Garlow, J. A., Barrett, L. K., Wu, L., Kisslinger, K., Zhu, Y., & Pulecio, J. F. (2016). Large-

Area Growth of Turbostratic Graphene on Ni(111) via Physical Vapor Deposition. 

Scientific Reports, 6, 19804. https://doi.org/10.1038/srep19804 

Grundmann, M. J. (n.d.). Bandeng_Mike Grudmann_UCSB.pdf. Retrieved from 

http://my.ece.ucsb.edu/mgrundmann/bandeng.htm 

Gundimeda, A., Krishna, S., Aggarwal, N., Sharma, A., Sharma, N. D., Maurya, K. K., … 

Gupta, G. (2017). Fabrication of non-polar GaN based highly responsive and fast UV 

Photodetector, 103507, 1–5. https://doi.org/10.1063/1.4978427 

Haizheng Song, Tawhid Rana, M.V.S. Chandrashekhar, Sabih U. Omar, T. S. S. (2013). 

Comparison of SiC Epitaxial Growth from Dichlorosilane and Tetrafluorosilane 

precursors. ECS Transactions, 58(4), 97–109. 

Hamamatsu. (2009). Opto-semiconductor handbook. Hamamatsu Photonics K.K.Solid 

State Division. Retrieved from 

http://www.hamamatsu.com/resources/pdf/ssd/e02_handbook_si_photodiode.pdf 

Hooge, F. N. (1994). 1/f Noise Sources. IEEE Transactions on Electron Devices, 41(11), 

1926–1935. https://doi.org/10.1109/16.333808 

Hudgins, J. L., Member, S., Simin, G. S., Santi, E., & Khan, M. A. (2003). An Assessment 

of Wide Bandgap Semiconductors for Power Devices. IEEE Transaction on Power 

Electronics, 18(3), 907–914. 

Iwaya, M., Miura, S., Fujii, T., Kamiyama, S., Amano, H., & Akasaki, I. (2009). High-

performance UV detector based on AlGaN/GaN junction heterostructure-field-effect 

transistor with a p-GaN gate. Physica Status Solidi (C) Current Topics in Solid State 

Physics, 6(SUPPL. 2), S972–S975. https://doi.org/10.1002/pssc.200880815 

Iyechika, Y. (2010). Application of Graphene to High-Speed Transistors : Expectations 

and Challenges. Science & Technology Trends, 37, 76–92. 

Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., … Hong, B. H. (2009). 



www.manaraa.com

 

117 

 

Large-scale pattern growth of graphene films for stretchable transparent electrodes. 

Nature, 457(7230), 706–710. https://doi.org/10.1038/nature07719 

Kimoto, T. (2015). Material science and device physics in SiC technology for high-voltage 

power devices. Japanese Journal of Applied Physics, 54, 40103. 

https://doi.org/10.7567/JJAP.54.040103 

Kimoto, T. (2016). Bulk and epitaxial growth of silicon carbide. Progress in Crystal 

Growth and Characterization of Materials. Elsevier Ltd. 

https://doi.org/10.1016/j.pcrysgrow.2016.04.018 

Kimoto, T., & Cooper, J. A. (2014). Fundamentals of Silicon Carbide Technology: 

Growth, Characterization, Devices and Applications. Fundamentals of Silicon 

Carbide Technology: Growth, Characterization, Devices and Applications. Wiley. 

https://doi.org/10.1002/9781118313534 

Kimoto, T., Hiyoshi, T., Hayashi, T., & Suda, J. (2010). Impacts of recombination at the 

surface and in the substrate on carrier lifetimes of n-type 4H-SiC epilayers. Journal 

of Applied Physics, 108(8), 83721. https://doi.org/10.1063/1.3498818 

Koley, G., Cha, H., Thomas, C. I., Spencer, M. G., Koley, G., Cha, H., … Spencer, M. G. 

(2002). Laser-induced surface potential transients observed in III-nitride 

heterostructures Laser-induced surface potential transients observed in III-nitride 

heterostructures. Applied Physics Letters, 81(12), 2282. 

https://doi.org/10.1063/1.1506416 

Kostov, P., Gaberl, W., & Zimmermann, H. (2013). High-speed bipolar phototransistors in 

a 180 nm CMOS process. Optics and Laser Technology, 46(1), 6–13. 

https://doi.org/10.1016/j.optlastec.2012.04.011 

Kunihiro Suzuki. (1991). Emitter and base transit time of polycrystalline silicon emitter 

contact bipolar transistors. IEEE Transactions on Electron Devices, 38(11), 2512–

2518. 

Kusdemir, E., Ozkendir, D., Firat, V., & Celebi, C. (2015). Epitaxial graphene contact 

electrode for silicon carbide based ultraviolet photodetector. Journal of Physics D: 

Applied Physics, 48(9), 95104. https://doi.org/10.1088/0022-3727/48/9/095104 

Larkin, D. J., Neudeck, P. G., Powell, J. A., & Matus, L. G. (1994). Site-competition 

epitaxy for superior silicon carbide electronics. Applied Physics Letters, 65(13), 

1659–1661. https://doi.org/10.1063/1.112947 

Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the Elastic Properties 

and Intrinsic Strength of Monolayer Graphene. Science, 321(July), 385–388. 

https://doi.org/10.1126/science.1157996 

Luo, Z., Yu, T., Kim, K. J., Ni, Z., You, Y., Lim, S., … Lin, J. (2009). Thickness-dependent 

reversible hydrogenation of graphene layers. ACS Nano, 3(7), 1781–1788. 

https://doi.org/10.1021/nn900371t 

Lupina, G., Kitzmann, J., Costina, I., Lukosius, M., Wenger, C., Wolff, A., … Mehr, W. 

(2015). Residual metallic contamination of transferred chemical vapor deposited 



www.manaraa.com

 

118 

 

graphene. ACS Nano, 9(5), 4776–4785. https://doi.org/10.1021/acsnano.5b01261 

Luxmi, Srivastava, N., He, G., & Feenstra, R. M. (2008). Comparison of Graphene 

Formation on C-face and Si-face SiC {0001} Surfaces. Physical Review B, 82(23), 

235406. 

Macmillan, M. F., Henry, A., & Janzeni, E. (1998). Thickness determination of low doped 

SiC epi-films on highly doped SiC substrates. Journal of Electronic Materials, 27(4), 

300–303. Retrieved from http://www.scopus.com/scopus/inward/record.url?eid=2-

s2.0-0011641368&partner=40&rel=R5.0.1 

Matsunami, H., & Kimoto, T. (1997). Step-controlled epitaxial growth of SiC: High quality 

homoepitaxy. Materials Science and Engineering R: Reports, 20(3), 125–166. 

https://doi.org/10.1016/S0927-796X(97)00005-3 

Mattevi, C., Kim, H., & Chhowalla, M. (2011). A review of chemical vapour deposition of 

graphene on copper. J. Mater. Chem., 21(10), 3324–3334. 

https://doi.org/10.1039/C0JM02126A 

Mazzillo, M., Condorelli, G., Castagna, M. E., Catania, G., Sciuto, A., Roccaforte, F., & 

Raineri, V. (2009). Highly efficient low reverse biased 4H-SiC schottky photodiodes 

for UV-light detection. IEEE Photonics Technology Letters, 21(23), 1782–1784. 

https://doi.org/10.1109/LPT.2009.2033713 

McWhorter, A. L. (1957). 1/f Noise and Germanium Surface Properties. Semiconductor 

Surface Physics. University of Pennsylvania press. Retrieved from 

http://scholar.google.com/scholar?q=related:6AGLLYe9BPwJ:scholar.google.com/

&hl=en&num=30&as_sdt=0,5%5Cnfile:///Users/timothyamorgan/Dropbox/Papers/

Library.papers3/Articles/1957/McWhorter/1957 McWhorter1f noise and germanium 

surface properties.pdf%5Cnpape 

Mishra, U. K., Parikh, P., & Wu, Y. F. (2002). AlGaN/GaN HEMTs - An overview of 

device operation and applications. Proceedings of the IEEE, 90(6), 1022–1031. 

https://doi.org/10.1109/JPROC.2002.1021567 

Monroy, E., Munoz, E., Sanchez, F. J., Calle, F., Calleja, E., Beaumont, B., … Cusso, F. 

(1998). High-performance GaN p-n junction photodetectors for solar ultraviolet 

applications. Semiconductor Science and Technology, 13(9), 1042–1046. 

Monroy, E., Omn s, F., & Calle, F. (2003). Wide-bandgap semiconductor ultraviolet 

photodetectors. Semiconductor Science and Technology, 18(4), R33–R51. 

https://doi.org/10.1088/0268-1242/18/4/201 

Monroy, E., Omnes, F., & Calle, F. (2003). Wide-bandgap semiconductor ultraviolet 

photodetectors. Semiconductor Science and Technology, 18(4), R33–R51. 

https://doi.org/10.1088/0268-1242/18/4/201 

Monroy, E., Omnès, F., & Calle, F. (2003). Wide-bandgap semiconductor ultraviolet 

photodetectors. Semiconductor Science and Technology, 18(4). 

https://doi.org/10.1088/0268-1242/18/4/201 

Mueller, T., Xia, F., Freitag, M., Tsang, J., & Avouris, P. (2009). The role of contacts in 



www.manaraa.com

 

119 

 

graphene transistors : A scanning photocurrent study. Physical Review B, 79(24), 

245430. 

Muhtadi, S., Hwang, S., Coleman, A., Asif, F., Lunev, A., Chandrashekhar, M. V. S., & 

Khan, A. (2017). High temperature operation of n -AlGaN channel metal 

semiconductor field effect transistors on low-defect AlN templates. Applied Physics 

Letters, 110(19), 193501. https://doi.org/10.1063/1.4982656 

Muhtadi, S., Hwang, S. M., Coleman, A., Asif, F., Simin, G., Chandrashekhar, M., & Khan, 

A. (2017). High Electron Mobility Transistors With Al 0.65 Ga 0.35 N Channel 

Layers on Thick AlN/Sapphire Templates. IEEE Electron Device Letters, 38(7), 914–

917. https://doi.org/10.1109/LED.2017.2701651 

Muhtadi, S., Hwang, S. M., Coleman, A. L., Lunev, A., Asif, F., Chava, V. S. N., … Khan, 

A. (2017). High-speed solar-blind UV photodetectors using high-Al content 

Al0.64Ga0.36N/Al0.34Ga0.66N multiple quantum wells. Applied Physics Express, 

10(1), 11004. https://doi.org/10.7567/APEX.10.011004 

Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The 

electronic properties of graphene. Reviews of Modern Physics, 81(1), 109. 

https://doi.org/10.1126/science.1213003 

Neudeck, P. G., Okojie, R. S., & Chen, L. Y. (2002). High-temperature electronics - A role 

for wide bandgap semiconductors? Proceedings of the IEEE, 90(6), 1065–1076. 

https://doi.org/10.1109/JPROC.2002.1021571 

Ni, Z., Chen, W., Fan, X., Kuo, J., Yu, T., Wee, A., & Shen, Z. (2008). Raman spectroscopy 

of epitaxial graphene on a SiC substrate. Physical Review B, 77(11), 115416. 

https://doi.org/10.1103/PhysRevB.77.115416 

Novoselov, K. S., Fal’Ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., & Kim, K. 

(2012). A roadmap for graphene. Nature, 490(7419), 192–200. 

https://doi.org/10.1038/nature11458 

Novoselov, K. S., Geim, A. K., Morozov, S. V, Jiang, D. A., Zhang, Y., Dubonos, S. V, 

… Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 

306(5696), 666–669. https://doi.org/10.1126/science.1102896 

Osinsky, A., Gangopadhyay, S., Lim, B. W., Anwar, M. Z., Khan, M. A., Kuksenkov, D. 

V., & Temkin, H. (1998). Schottky barrier photodetectors based on AlGaN. Applied 

Physics Letters, 72(6), 742–744. https://doi.org/10.1063/1.120862 

Osinsky, A., Gangopadhyay, S., Yang, J. W., Gaska, R., Kuksenkov, D., Temkin, H., … 

Kolbas, R. M. (1998). Visible-blind GaN Schottky barrier detectors grown on Si(111). 

Applied Physics Letters, 72(5), 551–553. https://doi.org/10.1063/1.120755 

Pedersen, H., Leone, S., Kordina, O., Henry, A., Nishizawa, S. I., Koshka, Y., & Janzén, 

E. (2012). Chloride-based CVD growth of silicon carbide for electronic applications. 

Chemical Reviews, 112(4), 2434–2453. https://doi.org/10.1021/cr200257z 

Pei, S., & Cheng, H. M. (2012). The reduction of graphene oxide. Carbon, 50(9), 3210–

3228. https://doi.org/10.1016/j.carbon.2011.11.010 



www.manaraa.com

 

120 

 

Rana, T. (2013). HIGH QUALITY SILICON CARBIDE EPITAXIAL GROWTH BY NOVEL 

FLUOROSILANE GAS CHEMISTRY FOR NEXT GENERATION HIGH POWER 

ELECTRONICS. 

Rana, T., Chandrashekhar, M. V. S., Daniels, K., & Sudarshan, T. (2015). Epitaxial growth 

of graphene on SiC by Si selective etching using SiF4 in an inert ambient. Japanese 

Journal of Applied Physics, 54(3), 30304. https://doi.org/10.7567/JJAP.54.030304 

Rana, T., Chandrashekhar, M. V. S., & Sudarshan, T. S. (2012). Elimination of silicon gas 

phase nucleation using tetrafluorosilane (SiF4) precursor for high quality thick silicon 

carbide (SiC) homoepitaxy. Physica Status Solidi (A) Applications and Materials 

Science, 209(12), 2455–2462. https://doi.org/10.1002/pssa.201228319 

Razeghi, M. (2002). Short-Wavelength Solar-Blind Detectors — Status , Prospects , and 

Markets. Proceedings of the IEEE, 90(6), 1006–1014. 

Razeghi, M., & Rogalski, A. (1996). Semiconductor ultraviolet detectors. Journal of 

Applied Physics, 79(10), 7433–7473. https://doi.org/10.1063/1.362677 

Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A. A., & Starke, U. (2009). Quasi-free 

Standing Epitaxial Graphene on SiC by Hydrogen Intercalation. Physical Review 

Letters, 103(24), 246804. https://doi.org/10.1103/PhysRevLett.103.246804 

Robinson, J. A., Wetherington, M., Tedesco, J. L., Campbell, P. M., Weng, X., Stitt, J., … 

Gaskill, D. K. (2009). Correlating Raman Spectral Signatures with Carrier Mobility 

in Epitaxial Graphene : A Guide to Achieving High Mobility on the Wafer Scale 2009. 

Nano Letters, 9(8), 2873–2876. https://doi.org/10.1021/nl901073g 

Rumyantsev, S., Liu, G., Stillman, W., Shur, M., & Balandin,  a. a. (2010). Electrical and 

Noise Characteristics of Graphene Field-Effect Transistors: Ambient Effects and 

Noise Sources. Journal of Physics: Condensed Matter, 22(39), 395302. Retrieved 

from http://arxiv.org/abs/1008.2990 

Schoen, K. J., Woodall, J. M., Cooper, J. a., & Melloch, M. R. (1998). Design 

considerations and experimental analysis of high-voltage SiC Schottky barrier 

rectifiers. IEEE Transactions on Electron Devices, 45(7), 1595–1604. 

https://doi.org/10.1109/16.701494 

Sciuto, A., Roccaforte, F., Di Franco, S., Liotta, S. F., Bonanno, G., & Raineri, V. (2007). 

High efficiency 4H-SiC Schottky UV-photodiodes using self-aligned semitransparent 

contacts. Superlattices and Microstructures, 41(1), 29–35. 

https://doi.org/10.1016/j.spmi.2006.10.002 

Sciuto, A., Roccaforte, F., Franco, S. Di, Raineri, V., & Bonanno, G. (2006). High 

responsivity 4 H -SiC Schottky UV photodiodes based on the pinch-off surface effect. 

Applied Physics Letters, 89(8), 81111. https://doi.org/10.1063/1.2337861 

Shaffer, P. T. B. (1969). A review of the structure of silicon carbide. Acta 

Crystallographica Section B Structural Crystallography and Crystal Chemistry, 

25(3), 477–488. https://doi.org/10.1107/S0567740869002457 

Shetu, S. S., Omar, S. U., Daniels, K. M., Daas, B., Andrews, J., Ma, S., … 



www.manaraa.com

 

121 

 

Chandrashekhar, M. V. S. (2013). Si-adatom kinetics in defect mediated growth of 

multilayer epitaxial graphene films on 6H-SiC. Journal of Applied Physics, 114(16), 

164903. https://doi.org/10.1063/1.4826899 

Singh, A., Uddin, M. A., Sudarshan, T., & Koley, G. (2014). Tunable reverse-biased 

graphene/silicon heterojunction Schottky diode sensor. Small, 10(8), 1555–1565. 

https://doi.org/10.1002/smll.201302818 

Song, H., Chandrashekhar, M. V. S., & Sudarshan, T. S. (2014). Study of Surface 

Morphology, Impurity Incorporation and Defect Generation during Homoepitaxial 

Growth of 4H-SiC Using Dichlorosilane. ECS Journal of Solid State Science and 

Technology, 4(3), P71–P76. https://doi.org/10.1149/2.0071503jss 

Sridhara, S. ., Eperjesi, T. ., Devaty, R. ., & Choyke, W. . (1999). Penetration depths in the 

ultraviolet for 4H, 6H and 3C silicon carbide at seven common laser pumping 

wavelengths. Materials Science and Engineering: B, 61–62, 229–233. 

https://doi.org/10.1016/S0921-5107(98)00508-X 

Sridhara, S. G., Devaty, R. P., & Choyke, W. J. (1998). Absorption coefficient of 4H silicon 

carbide from 3900 to 3250 Å. Journal of Applied Physics, 84(5), 2963–2964. 

https://doi.org/10.1063/1.368403 

Su, Y. K., Chang, S. J., Chen, C. H., Chen, J. F., Chi, G. C., Sheu, J. K., … Tsai, J. M. 

(2002). GaN metal-semiconductor-metal ultraviolet sensors with various contact 

electrodes. IEEE Sensors Journal, 2(4), 366–371. 

https://doi.org/10.1016/j.jcrysgro.2006.03.059 

Su, Y. K., Chiou, Y. Z., Chang, C. S., Chang, S. J., Lin, Y. C., & Chen, J. F. (2002). 4H-

SiC metal-semiconductor-metal ultraviolet photodetectors with Ni/ITO electrodes. 

Solid-State Electronics, 46(12), 2237–2240. https://doi.org/10.1016/S0038-

1101(02)00234-4 

Su, Y. K., Wei, S. C., Wang, R. L., Chang, S. J., Ko, C. H., & Kuan, T. M. (2003). Flicker 

Noise of GaN-Based Heterostructure Field-Effect Transistors With Si-Doped AlGaN 

Carrier Injection Layer. IEEE Electron Device Letters, 24(10), 622–624. 

https://doi.org/10.1109/LED.2003.817869 

Sutter, P. W., Flege, J. I., & Sutter, E. A. (2008). Epitaxial graphene on ruthenium. Nature 

Materials, 7(5), 406–411. https://doi.org/10.1038/nmat2166 

Sze, S., & Ng, K. (2006). Physics of semiconductor devices. Wiley. Retrieved from 

https://books.google.com/books?hl=en&lr=&id=o4unkmHBHb8C&oi=fnd&pg=PR

7&dq=S.M.Sze+Physics+of+semiconductor+devices+3rd+edition&ots=wGqkcJCk1

W&sig=Idm6PYZeltLQVBZ7-Fg0ShYyZYE 

Terrones, M., Botello-Méndez, A. R., Campos-Delgado, J., López-Urías, F., Vega-Cantú, 

Y. I., Rodríguez-Macías, F. J., … Terrones, H. (2010). Graphene and graphite 

nanoribbons: Morphology, properties, synthesis, defects and applications. Nano 

Today, 5(4), 351–372. https://doi.org/10.1016/j.nantod.2010.06.010 

Tongay, S., Lemaitre, M., Miao, X., Gila, B., Appleton, B. R., & Hebard, A. F. (2012). 



www.manaraa.com

 

122 

 

Rectification at graphene-semiconductor interfaces: Zero-gap semiconductor-based 

diodes. Physical Review X, 2(1), 11002. https://doi.org/10.1103/PhysRevX.2.011002 

Tongay, S., Schumann, T., & Hebard, A. F. (2009). Graphite based Schottky diodes formed 

on Si , GaAs , and 4H-SiC substrates. Applied Physics Letters, 95(22), 222103. 

https://doi.org/10.1063/1.3268788 

Varchon, F., Feng, R., Hass, J., Li, X., Nguyen, B. N., Naud, C., … Magaud, L. (2007). 

Electronic structure of epitaxial graphene layers on SiC: effect of the substrate. 

Physical Review Letters, 99(12), 126805. 

https://doi.org/10.1103/PhysRevLett.99.126805 

Walker, D., Zhang, X., Kung, P., Saxler, A., Javadpour, S., Xu, J., & Razeghi, M. (1996). 

AlGaN ultraviolet photoconductors grown on sapphire. Applied Physics Letters, 

68(15), 2100–2101. https://doi.org/10.1063/1.115597 

Wallace, P. R. (1947). The band theory of graphite. Physical Review, 71(9), 622–634. 

https://doi.org/10.1103/PhysRev.71.622 

Wang, C. K., Chang, S. J., Su, Y. K., Chiou, Y. Z., Chen, S. C., Chang, C. S., … Tang, J. 

J. (2006). GaN MSM UV photodetectors with titanium tungsten transparent 

electrodes. IEEE Transactions on Electron Devices, 53(1), 38–42. 

https://doi.org/10.1109/TED.2005.860780 

Wijesundara, M. B. J., & Azevedo, R. (2011). Silicon Carbide Microsystems for Harsh 

Environments. Springer Science & Business Media (Vol. 22). 

https://doi.org/10.1007/978-1-4419-7121-0 

Wright, N. G., & Horsfall, A. B. (2007). SiC sensors: a review. Journal of Physics D: 

Applied Physics, 40(20), 6345–6354. https://doi.org/10.1088/0022-3727/40/20/S17 

Y.Mizushima, Y. A. and. (1984). Bipolar-mode Schottky contact and applications to high-

speed diodes. IEEE Transactions on Electron Devices, 31(1), 35–42. 

Yang, W., Nohava, T., Krishnankutty, S., Torreano, R., Mcpherson, S., & Marsh, H. 

(1998). High gain GaN / AlGaN heterojunction phototransistor. Applied Physics 

Letters, 73(7), 978–981. 

Yang, W., Nohava, T., Krishnankutty, S., Torreano, R., McPherson, S., & Marsh, H. 

(1998). High gain GaN/AlGaN heterojunction phototransistor. Applied Physics 

Letters, 73(7), 978–980. https://doi.org/10.1063/1.122058 

Yoshida, S., Misawa, S., & Gonda, S. (1982). Properties of AlxGa1-xN films prepared by 

reactive molecular beam epitaxy Properties of Alx Ga 1 _ x N films prepared by 

reactive molecular beam epitaxy. Journal of Applied Physics, 53(10), 6844–6848. 

https://doi.org/10.1063/1.329998 

Yoshikawa, A., Ushida, S., Nagase, K., Iwaya, M., Takeuchi, T., Kamiyama, S., & 

Akasaki, I. (2017). High-performance solar-blind Al0.6Ga0.4N/Al0.5Ga0.5N MSM 

type photodetector. Applied Physics Letters, 111(19), 191103. 

Yoshikawa, A., Yamamoto, Y., Murase, T., Iwaya, M., Takeuchi, T., Kamiyama, S., & 



www.manaraa.com

 

123 

 

Akasaki, I. (2016). High-photosensitivity AlGaN-based UV heterostructure-field-

effect-transistor-type photosensors. Japanese Journal of Applied Physics, 55, 05FJ04. 

Zhang, N. (2011). Characterization of Dislocations Structures and Properties in Silicon 

Carbide Bulk Crystals and Epilayers. Retrieved from 

http://dspace.sunyconnect.suny.edu/bitstream/handle/1951/51169/000000658.sbu.pd

f?sequence=1 

Zhang, Z., & Sudarshan, T. S. (2005). Basal plane dislocation-free epitaxy of silicon 

carbide. Applied Physics Letters, 87(15), 151913. https://doi.org/10.1063/1.2093931 

Zhu, H., Chen, X., Cai, J., & Wu, Z. (2009). 4H-SiC ultraviolet avalanche photodetectors 

with low breakdown voltage and high gain. Solid-State Electronics, 53(1), 7–10. 

https://doi.org/10.1016/j.sse.2008.09.002



www.manaraa.com

 

124 

 

APPENDIX A: PERMISSION TO REPRINT

CHAPTER 3: 

 



www.manaraa.com

 

125 

 

 

  



www.manaraa.com

 

126 

 



www.manaraa.com

 

127 

 



www.manaraa.com

 

128 

 

CHAPTER-4: 

 


	University of South Carolina
	Scholar Commons
	2018

	Study Of 4H-SiC And ALxGA1-xN Based Heterojunction Devices For Ultraviolet Detection Applications
	Venkata Surya Naga Raju Chava
	Recommended Citation


	tmp.1546548353.pdf.KsYB5

